Properties of synaptic inputs from myenteric neurons innervating submucosal S neurons in guinea pig ileum. (49/3000)

This study examined synaptic inputs from myenteric neurons innervating submucosal neurons. Intracellular recordings were obtained from submucosal S neurons in guinea pig ileal preparations in vitro, and synaptic inputs were recorded in response to electrical stimulation of exposed myenteric plexus. Most S neurons received synaptic inputs [>80% fast (f) excitatory postsynaptic potentials (EPSP), >30% slow (s) EPSPs] from the myenteric plexus. Synaptic potentials were recorded significant distances aboral (fEPSPs, 25 mm; sEPSPs, 10 mm) but not oral to the stimulating site. When preparations were studied in a double-chamber bath that chemically isolated the stimulating "myenteric chamber" from the recording side "submucosal chamber," all fEPSPs were blocked by hexamethonium in the submucosal chamber, but not by a combination of nicotinic, purinergic, and 5-hydroxytryptamine-3 receptor antagonists in the myenteric chamber. In 15% of cells, a stimulus train elicited prolonged bursts of fEPSPs (>30 s duration) that were blocked by hexamethonium. These findings suggest that most submucosal S neurons receive synaptic inputs from predominantly anally projecting myenteric neurons. These inputs are poised to coordinate intestinal motility and secretion.  (+info)

Propagation of individual spikes as "patches" of activation in isolated feline duodenum. (50/3000)

Asynchrony of spikes has made it difficult to study the spatial and temporal behavior of spikes in the gastrointestinal system. By simultaneously recording from a large number of closely spaced electrodes, we investigated the propagation of individual spikes. Recordings were performed from the serosal surface of the isolated feline duodenum at 240 sites simultaneously. Analysis of the tracings made it possible to reconstruct the propagation of individual spikes. Spikes propagate in the longitudinal and circumferential directions in self-limiting areas or "patches." Conduction within patches may occur in the orad or aborad direction irrespective of the direction of the slow wave. Most of the patches are smaller (<40 mm(2)), although inhomogeneous activation by the preceding slow wave may increase their size. Stimulation by ACh, TTX, or tetraethylammonium does not affect the average patch size but does increase significantly their number and distribution in the duodenum [from 26% (control) to 56%, 61%, and 72%, respectively]. In conclusion, individual spikes activate limited areas or patches in the small intestine, and pharmacological stimulation increases the number and distribution of these patches. In the small intestine, this pattern of activation would induce localized contractions. Contraction could be modulated by the size, number, and distribution of spike patches.  (+info)

Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. (51/3000)

Organization of cardiac tissue into cell strands and layers has been implicated in changes of transmembrane potential (DeltaV(m)) during defibrillation. To determine the shock-induced DeltaV(m) in such structures, cell strands of variable width [strand width (SW) = 0.15-2 mm] were grown in culture. Uniform-field shocks with variable strength [shock strength (SS) = 2-50 V/cm] were applied across strands during the action potential (AP) plateau, and DeltaV(m) were measured optically. Three different types of DeltaV(m) were observed. Small DeltaV(m) [<40%AP amplitude (APA)] were linearly dependent on SS and SW and were symmetrically distributed about a strand centerline with maximal positive and negative DeltaV(m) on opposite strand sides being equal. Intermediate DeltaV(m) (<200%APA) were strongly asymmetric with negative DeltaV(m) > positive DeltaV(m) because of a negative time-dependent shift of V(m) at the depolarized side of the strands. For large DeltaV(m) (>200%APA), a second time-dependent shift of V(m) to more positive levels was observed in the hyperpolarized portions of strands, causing reduction of the DeltaV(m) asymmetry. We conclude that during application of shocks to cell strands during the AP plateau, passive changes of V(m) were followed by two voltage- and time-dependent shifts of V(m), possibly reflecting changes of ionic currents or membrane electroporation.  (+info)

Dehydroepiandrosterone retards atherosclerosis formation through its conversion to estrogen: the possible role of nitric oxide. (52/3000)

Dehydroepiandrosterone (DHEA) is speculated to have an antiatherosclerotic effect, although the mechanism of action remains unclear. The objective of the current study was to determine whether the antiatherosclerotic effect of DHEA is related to its conversion to estrogen and to define the role of nitric oxide (NO) in the antiatherosclerotic effect of DHEA. Forty-eight oophorectomized rabbits were divided into 5 groups and fed the following diets for 10 weeks: group 1, a regular rabbit diet plus 1% cholesterol (a high-cholesterol diet [HCD]); group 2, an HCD plus 0.3% DHEA; group 3, an HCD plus 0.3% DHEA and fadrozole (2.0 mg x kg(-1) x d(-1)), a specific aromatase inhibitor; group 4, an HCD plus 17beta-estradiol (20 microg x kg(-1) x d(-1)); and group 5, a regular diet. Atherosclerotic lesions, lipid deposition in aortic vessels, and basal and stimulated NO release were measured in the aforementioned groups of rabbits. NO release was measured by using an NO-selective electrode as well as by measuring vascular responses and the plasma NO metabolites nitrite and nitrate. The plasma total cholesterol level was increased, but there were no significant differences in lipid profile in the 4 groups of rabbits that were fed the HCD. The area occupied by atherosclerosis in the thoracic aorta was diminished by approximately 60% in the DHEA-treated rabbits (group 2) compared with the HCD group of rabbits (group 1); there was a corresponding 80% decrease in the estradiol group (group 4) but only a 30% decrease in the DHEA plus fadrozole group (group 3). In the aortas of rabbits from groups 1 and 3, the acetylcholine-induced and tone-related basal NO-mediated relaxations were diminished compared with those of the controls (group 5). However, these relaxations were restored in the aortas of group 2 and 4 rabbits, and an increase in NO release was observed in groups 2 and 4 compared with groups 1 and 3, as measured by an NO-selective electrode. Injection of neither solvent (20% ethanol/distilled water) nor fadrozole significantly affected the atherosclerotic area or the NO-related responses described above. We conclude that approximately 50% of the total antiatherosclerotic effect of DHEA was achieved through the conversion of DHEA to estrogen. NO may also play a role in the antiatherosclerotic effect of DHEA and 17beta-estradiol.  (+info)

Modulation of laryngeal responses to superior laryngeal nerve stimulation by volitional swallowing in awake humans. (53/3000)

Laryngeal sensori-motor closure reflexes are important for the protection of the airway and prevent the entry of foreign substances into the trachea and lungs. The purpose of this study was to determine how such reflexes might be modulated during volitional swallowing in awake humans, when persons are at risk of entry of food or liquids into the airway. The frequency and the amplitude of laryngeal adductor responses evoked by electrical stimulation of the internal branch of the superior laryngeal nerve (ISLN) were studied during different phases of volitional swallowing. Subjects swallowed water on command while electrical stimuli were presented to the ISLN at various intervals from 500 ms to 5 s following the command. Laryngeal adductor responses to unilateral ISLN stimulation were recorded bilaterally in the thyroarytenoid muscles using hooked wire electrodes. Early ipsilateral R1 responses occurred at 17 ms, and later bilateral R2 began around 65 ms. The muscle responses to stimuli occurring during expiration without swallowing were quantified as control trials. Responses to stimulation presented before swallowing, during the swallow, within 3 s after swallowing, and between 3 and 5 s after a swallow were measured. The frequency and amplitude of three responses (ipsilateral R1 and bilateral R2) relative to the control responses were compared across the different phases relative to the occurrence of swallowing. Results demonstrated that a reduction occurred in both the frequency and amplitude of the later bilateral R2 laryngeal responses to electrical stimulation for up to 3 s after swallowing (P = 0.005). The amplitude and frequency of ipsilateral R1 laryngeal responses, however, did not show a significant main effect following the swallow (P = 0.28), although there was a significant time by measure interaction (P = 0.006) related to reduced R1 response amplitude up to 3 s after swallowing (P = 0.021). Therefore, the more rapid and shorter unilateral R1 responses continued to provide some, albeit reduced, laryngeal protective functions after swallowing, whereas the later bilateral R2 responses were suppressed both in occurrence and amplitude for up to 3 s after swallowing. The results suggest that R2 laryngeal adductor responses are suppressed following swallowing when residues may remain in the laryngeal vestibule putting persons at increased risk for the entry of foreign substances into the airway.  (+info)

Firing properties and electrotonic structure of Xenopus larval spinal neurons. (54/3000)

Whole cell voltage- and current-clamp measurements were done on intact Xenopus laevis larval spinal neurons at developmental stages 42-47. Firing patterns and electrotonic properties of putative interneurons from the dorsal and ventral medial regions of the spinal cord at myotome levels 4-6 were measured in isolated spinal cord preparations. Passive electrotonic parameters were determined with internal cesium sulfate solutions as well as in the presence of active potassium conductances. Step-clamp stimuli were combined with white-noise frequency domain measurements to determine both linear and nonlinear responses at different membrane potential levels. Comparison of analytic and compartmental dendritic models provided a way to determine the number of compartments needed to describe the dendritic structure. The electrotonic structure of putative interneurons was correlated with their firing behavior such that highly accommodating neurons (Type B) had relatively larger dendritic areas and lower electrotonic lengths compared with neurons that showed sustained action potential firing in response to a constant current (Type A). Type A neurons had a wide range of dendritic areas and potassium conductances that were activated at membrane potentials more negative than observed in Type B neurons. The differences in the potassium conductances were in part responsible for a much greater rectification in the steady-state current voltage (I-V curve) of the strongly accommodating neurons compared with repetitively firing cells. The average values of the passive electrotonic parameters found for Rall Type A and B neurons were c(soma) = 3.3 and 2.6 pF, g(soma) = 187 and 38 pS, L = 0.36 and 0.21, and A = 3.3 and 6.5 for soma capacitance, soma conductance, electrotonic length, and the ratio of the dendritic to somatic areas, respectively. Thus these experiments suggest that there is a correlation between the electrotonic structure and the excitability properties elicited from the somatic region.  (+info)

Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo. (55/3000)

A major component of the cortical regulation of the nigrostriatal dopamine (DA) system is known to occur via activation of striatal efferent systems projecting to the substantia nigra. The potential intermediary role of striatal nitric oxide synthase (NOS)-containing interneurons in modulating the efferent regulation of DA neuron activity was examined using single-unit recordings of DA neurons performed concurrently with striatal microdialysis in anesthetized rats. The response of DA neurons recorded in the substantia nigra to intrastriatal artificial cerebrospinal fluid (ACSF) or drug infusion was examined in terms of mean firing rate, percent of spikes fired in bursts, cells/track, and response to electrical stimulation of the orbital prefrontal cortex (oPFC) and striatum. Intrastriatal infusion of NOS substrate concurrently with intermittent periods of striatal and cortical stimulation increased the mean DA cell population firing rate as compared with ACSF controls. This effect was reproduced via intrastriatal infusion of a NO generator. Infusion of either a NOS inhibitor or NO chelator via reverse microdialysis did not affect basal firing rate but increased the percentage of DA neurons responding to striatal stimulation with an initial inhibition followed by a rebound excitation (IE response) from 40 to 74%. NO scavenger infusion also markedly decreased the stimulation intensity required to elicit an IE response to electrical stimulation of the striatum. In single neurons in which the effects of electrical stimulation were observed before and after drug delivery, NO antagonist infusion was observed to decrease the onset latency and extend the duration of the initial inhibitory phase induced by either oPFC or striatal stimulation. This is the first report showing that striatal NO tone regulates the basal activity and responsiveness of DA neurons to cortical and striatal inputs. These studies also indicate that striatal NO signaling may play an important role in the integration of information transmitted to basal ganglia output centers via corticostriatal and striatal efferent pathways.  (+info)

Assessment of diaphragm paralysis with oesophageal electromyography and unilateral magnetic phrenic nerve stimulation. (56/3000)

The purpose of this study was to establish a sensitive and reliable method of diagnosing diaphragm paralysis by recording the diaphragm compound muscle action potential (CMAP) using a multipair oesophageal electrode and unilateral magnetic phrenic nerve stimulation. An oesophageal electrode catheter was designed containing six coils (1 cm wide and 3 cm apart), creating an array of four sequential electrode pairs. The oesophageal catheter was taped at the nose with the proximal electrode pair 40 cm from the nares. Eight patients with unilateral (n=5) or bilateral (n=3) diaphragm paralysis were studied. Five to seven phrenic nerve stimulations were performed at 80% of maximum magnetic stimulator output and the CMAPs were recorded simultaneously from the four pairs of electrodes. In the five patients with unilateral diaphragm paralysis, the CMAP amplitudes and latencies were 1.16+/-0.29 mV and 7.6+/-1.5 ms for functioning sides. No diaphragm CMAP could be detected when stimulating nonfunctioning phrenic nerves. This study shows that diaphragm paralysis can be reliably diagnosed by unilateral magnetic stimulation combined with a multipaired oesophageal electrode.  (+info)