(1/19053) Inhibitory innervation of cat sphincter of Oddi.

1 Electrical stimulation with trains of 0.1-0.2 ms pulses of the cat isolated sphincter of Oddi inhibited the spontaneous contractile activity and lowered base-line tension considerably. A contraction usually followed the period of stimulation. 2 These inhibitory effects were prevented by tetrodotoxin 0.1-0.5 mug/ml but were not reduced by hexamethonilm, morphine, or blockade of alpha- or beta-adrenoreceptors of cholinoceptors with phenoxy-benzamine propranolol or atropine, respectively. 3 Adenosine-5'-triphosphate (ATP) and adenosine-5'-diphosphate (ADP) inhibited the spontaneous sphincter activity and caused relaxation thus mimicking the effects of the C-terminal octapeptide of cholecystokinin (C8-CCK), isoprenaline and prostaglandin E1 and E2. 4 ATP alone (greater than 100 mug/ml) or ATP (greater than 10 mug/ml) plus dipyridamole (1 mug/ml), relaxed the sphincter to the same degrees as did the field stimulation. 5 In sphincter maximally contracted by acetylcholine, the effect of stimulation was more marked than that recorded in uncontracted preparations. 6 The present findings suggest that the sphincter of Oddi receives inhibitory nerves that are neither cholinergic nor adrenergic.  (+info)

(2/19053) Further evidence that prostaglandins inhibit the release of noradrenaline from adrenergic nerve terminals by restriction of availability of calcium.

1 Guinea-pig vasa deferentia were continuously superfused after labelling the transmitter stores with [3H](-)-noradrenaline. Release of [3H]-(-)-noradrenaline was induced by transmural nerve stimulation. 2 Prostglandin E2 (14 nM) drastically reduced the release of [3H]-(-)-noradrenaline, while tetraethylammonium (2 mM), rubidium (6 mM), phenoxybenzamine (3 muM) each in the presence or absence of Uptake 1 or 2 blockade, and prolonged pulse duration (from 0.5 to 2.0 ms) all significantly increased the release of [3H]-(-)-noradrenaline per nerve impulse. 3 The inhibitory effect of prostaglandin E2 on evoked release of [3H]-(-)-noradrenaline was significantly reduced by tetraethylammonium, rubidium and prolonged pulse duration, whilst it was actually enhanced by phenoxybenzamine. This indicates that increased release of noradrenaline per nerve impulse does not per se counteract the inhibitory effect of prostaglandin E2. 4 It is concluded that tetraethylammonium, rubidium and prolonged pulse duration counteracted the inhibitory effect of prostaglandin E2 on T3H]-(-)-noradrenaline release by promoting calcium influx during the nerve action potential. The results are consistent with, and add more weight to the view that prostaglandins inhibit the release of noradrenaline by restriction of calcium availability.  (+info)

(3/19053) Automatic activity in depolarized guinea pig ventricular myocardium. Characteristics and mechanisms.

Membrane potential was changed uniformly in segments, 0.7-1.0 mm long, of guinea pig papillary muscles excised from the right ventricle by using extracellular polarizing current pulses applied across two electrically insulated cf preparations superfused with Tyrode's solution at maximum diastolic membrane potentials ranging from-35.2+/-7.5 (threshold) to +4.0+/-9.2 mV. The average maximum dV/dt of RAD ranged from 17.1 to 18.0 V/sec within a membrane potential range of -40 to +20 mV. Raising extracellular Ca2+ concentration [Ca2+]0 from 1.8 to 6.8 mM, or application of isoproterenol (10(-6)g/ml) enhanced the rate of RAD, but lowering [Ca2+]0 to 0.4 mM or exposure to MnCl2 (6 mM) abolished RAD. RAD were enhanced by lowering extracellular K+ concentration [K+]0 from 5.4 to 1.5 mM. RAD were suppressed in 40% of fibers by raising [K+]0 to 15.4 mM, and in all fibers by raising [K+]0 to 40.4 mM. This suppression was due to increased [K+]0 and not to K-induced depolarization because it persisted when membrane potential was held by means of a conditioning hyperpolarizing puled gradually after maximum repolarization. These observations suggest that the development of RAD in depolarized myocardium is associated with a time-dependent decrease in outward current (probably K current) and with increase in the background inward current, presumably flowing through the slow cha-nel carrying Ca or Na ions, or both.  (+info)

(4/19053) Reduction in baroreflex cardiovascular responses due to venous infusion in the rabbit.

We studied reflex bradycardia and depression of mean arterial blood pressure (MAP) during left aortic nerve (LAN) stimulation before and after volume infusion in the anesthetized rabbit. Step increases in mean right atrial pressure (MRAP) to 10 mm Hg did not result in a significant change in heart rate or MAP. After volume loading, responses to LAN stimulation were not as great and the degree of attenuation was propoetional to the level of increased MRAP. A change in responsiveness was observed after elevation of MRAP by only 1 mm Hg, corresponding to less than a 10% increase in average calculated blood volume. after an increase in MRAP of 10 mm Hg, peak responses were attenuated by 44% (heart rate) and 52% (MAP), and the initial slopes (rate of change) were reduced by 46% (heart rate) and 66% (MAP). Comparison of the responses after infusion with blood and dextran solutions indicated that hemodilution was an unlikely explanation for the attenuation of the reflex responses. Total arterial baroreceptor denervation (ABD) abolished the volume-related attenuation was still present following bilateral aortic nerve section or vagotomy. It thus appears that the carotid sinus responds to changes inblood volume and influences the reflex cardiovascular responses to afferent stimulation of the LAN. On the other hand, cardiopulmonary receptors subserved by vagal afferents do not appear to be involved.  (+info)

(5/19053) The effect of cardiac contraction on collateral resistance in the canine heart.

We determined whether the coronary collateral vessels develop an increased resistance to blood flow during systole as does the cognate vascular bed. Collateral resistance was estimated by measuring retrograde flow rate from a distal branch of the left anterior descending coronary artery while the main left coronary artery was perfused at a constant pressure. Retrograde flow rate was measured before and during vagal arrest. We found that in 10 dogs the prolonged diastole experienced when the heart was stopped caused no significant change in the retrograde flow rate, which indicated that systole has little effect on the collateral resistance. However, when left ventricular end-diastolic pressure was altered by changing afterload or contractility, a direct relationship between end-diastolic pressure and collateral resistance was noted.  (+info)

(6/19053) Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole.

Isolated false tendons excised form dog hearts were mounted in a three-chamber tissue bath. Isotonic sucrose solution was perfused in the central chamber to provide a region of depressed conductivity between the fiber segments in chambers 1 and 3, which were perfused with Tyrode's solution. The electrotonic influence of spontaneous or driven responses evoked in chamber 3 during the first half of the spontaneous cycle of a chamber 1 peacemaker delayed the next spontaneous discharge. This effect changed to acceleration when the chamber 3 segment fired during the second half of the spontaneous cycle. We found that subthreshold depolarizing current pulses 50-300 msec applied across the sucrose gap caused similar degrees of delay or acceleration. Furthermore, hyperpolarizing currents caused the reverse pattern. The results indicate that the discharge pattern of a parasystolic focus may be altered by the electrotonic influence of activity in the surrounding tissue. The significance of these findings is considered in relation to the mechanism of production of parasystolic rhythms.  (+info)

(7/19053) Evaluation of the force-frequency relationship as a descriptor of the inotropic state of canine left ventricular myocardium.

The short-term force-frequency characteristics of canine left ventricular myocardium were examined in both isolated and intact preparations by briefly pertubing the frequency of contraction with early extrasystoles. The maximum rate of rise of isometric tension (Fmas) of the isolated trabeculae carneae was potentiated by the introduction of extrasystoles. The ratio of Fmas of potentiated to control beats (force-frequency ratio) was not altered significantly by a change in muscle length. However, exposure of the trabeculae to isoproterenol (10(-7)M) significantly changed the force-frequency ratio obtained in response to a constant frequency perturbation. Similar experiments were performed on chronically instrumented conscious dogs. Left ventricular minor axis diameter was measured with implanted pulse-transit ultrasonic dimension transducers, and intracavitary pressure was measured with a high fidelity micromanometer. Atrial pacing was performed so that the end-diastolic diameters of the beats preceding and following the extrasystole could be made identical. Large increases in the maximum rate of rise of pressure (Pmas) were seen in the contraction after the extrasystole. The ratio of Pmax of the potentiated beat to that of the control beat was not changed by a 9% increase in the end-diastolic diameter, produced by saline infusion. Conversely, isoproterenol significantly altered this relationship in the same manner as in the isolated muscle. Thus, either in vitro or in situ, left ventricular myocardium exhibits large functional changes in response to brief perturbations in rate. The isoproterenol and length data indicate that the force-frequency ratio reflects frequency-dependent changes in the inotropic state, independent of changes in length.  (+info)

(8/19053) Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection.

Excitatory synaptic transmission between pyramidal cells and fast-spiking (FS) interneurons of layer V of the motor cortex was investigated in acute slices by using paired recordings at 30 degrees C combined with morphological analysis. The presynaptic and postsynaptic properties at these identified central synapses were compared between 3- and 5-week-old rats. At these two postnatal developmental stages, unitary EPSCs were mediated by the activation of AMPA receptors with fast kinetics at a holding potential of -72 mV. The amplitude distribution analysis of the EPSCs indicates that, at both stages, pyramidal-FS connections consisted of multiple functional release sites. The apparent quantal size obtained by decreasing the external calcium ([Ca2+]e) varied from 11 to 29 pA near resting membrane potential. In young rats, pairs of presynaptic action potentials elicited unitary synaptic responses that displayed paired-pulse depression at all tested frequencies. In older animals, inputs from different pyramidal cells onto the same FS interneuron had different paired-pulse response characteristics and, at most of these connections, a switch from depression to facilitation occurred when decreasing the rate of presynaptic stimulation. The balance between facilitation and depression endows pyramidal-FS connections from 5-week-old animals with wide integrative capabilities and confers unique functional properties to each synapse.  (+info)