Gene transfer of the serine elastase inhibitor elafin protects against vein graft degeneration. (57/1299)

BACKGROUND: Leukocyte infiltration and serine elastase activity lead to smooth muscle cell proliferation in association with posttransplant coronary arteriopathy and may also be involved in vein graft neointimal formation. A number of therapies have targeted cellular proliferation, but the inhibition of serine elastase-mediated extracellular matrix remodeling has not been investigated as a potential strategy to prevent neointimal formation and subsequent atherosclerotic degeneration in vein grafts. METHODS AND RESULTS: We studied jugular vein grafts 48 hours after interposition into the carotid arteries of rabbits and demonstrated inflammatory cell infiltration and elevated serine elastase activity, a stimulus for matrix remodeling and deposition of elastin. Therefore, elastolytic activity in vein grafts was targeted through transient expression of the selective serine elastase inhibitor elafin with hemagglutinating virus of Japan liposome-mediated gene transfer. Elafin transfection reduced inflammation by 60% at 48 hours and neointimal formation by approximately 50% at 4 weeks after implantation. At 3 months, a 74% decrease in neointimal elastin deposition correlated with protection against cholesterol-induced macrophage infiltration and lipid accumulation, which were both reduced by approximately 50% in elafin-transfected grafts relative to controls. CONCLUSIONS: Gene transfer of the selective serine elastase inhibitor elafin in vein grafts is effective in reducing the early inflammatory response. Although transient expression of elafin delays neointimal formation, it is also sufficient to cause an alteration in elastin content of the extracellular matrix, making it relatively resistant to atherosclerotic degeneration.  (+info)

Conformational dependence of collagenase (matrix metalloproteinase-1) up-regulation by elastin peptides in cultured fibroblasts. (58/1299)

We have established that treatment of cultured human skin fibroblasts with tropoelastin or with heterogenic peptides, obtained after organo-alkaline or leukocyte elastase hydrolysis of insoluble elastin, induces a high expression of pro-collagenase-1 (pro-matrix metalloproteinase-1 (pro-MMP-1)). The identical effect was achieved after stimulation with a VGVAPG synthetic peptide, reflecting the elastin-derived domain known to bind to the 67-kDa elastin-binding protein. This clearly indicated involvement of this receptor in the described phenomenon. This notion was further reinforced by the fact that elastin peptides-dependent MMP-1 up-regulation has not been demonstrated in cultures preincubated with 1 mm lactose, which causes shedding of the elastin-binding protein and with pertussis toxin, which blocks the elastin-binding protein-dependent signaling pathway involving G protein, phospholipase C, and protein kinase C. Moreover, we demonstrated that diverse peptides maintaining GXXPG sequences can also induce similar cellular effects as a "principal" VGVAPG ligand of the elastin receptor. Results of our biophysical studies suggest that this peculiar consensus sequence stabilizes a type VIII beta-turn in several similar, but not identical, peptides that maintain a sufficient conformation to be recognized by the elastin receptor. We have also established that GXXPG elastin-derived peptides, in addition to pro-MMP-1, cause up-regulation of pro-matrix metalloproteinase-3 (pro-stromelysin 1). Furthermore, we found that the presence of plasmin in the culture medium activated these MMP proenzymes, leading to a consequent degradation of collagen substrate. Our results may be, therefore, relevant to pathobiology of inflammation, in which elastin-derived peptides bearing the GXXPG conformation (created after leukocyte-dependent proteolysis) bind to the elastin receptor of local fibroblasts and trigger signals leading to expression and activation of MMP-1 and MMP-3, which in turn exacerbate local connective tissue damage.  (+info)

Lysyl oxidase and MMP-2 expression in dehydroepiandrosterone-induced polycystic ovary in rats. (59/1299)

Polycystic ovary syndrome (PCOS) is characterized by cystogenesis; however, the cause of this cystogenesis is unknown. At ovulation, preovulatory collagenolytic activities in the ovarian follicles increase and various proteinases are needed to degrade the tissues surrounding the follicles. To clarify the roles of enzymes in collagen degradation of the follicular wall of polycystic ovary (PCO) in relation to the cystogenesis, we examined expression of lysyl oxidase (LOX), which initiates cross-link formation of the collagen and elastin in the extracellular matrix, and expression of matrix metalloproteinases (MMPs) in ovaries of model rats with PCO induced by dehydroepiandrosterone (DHEA) compared with MMP expression in control rats. DHEA treatment increased LOX mRNA expression to more than three times the control value (P: < 0.01). MMP-2 mRNA expression in control rats was threefold greater than that in the DHEA-induced group (P: < 0.05). Expression of both latent and active forms of MMP-2 in controls was more than twice that in the DHEA-induced group (P: < 0.05) as shown by Western blotting, and expression of the active form of MMP-2 was also twice as high in the controls as in the DHEA-treated group (P: < 0.05) as shown by zymography. Our results suggest that depression of MMP-2 activity and increased LOX expression may be one of the causes of the cystogenesis of PCO.  (+info)

Trifluoroethanol may form a solvent matrix for assisted hydrophobic interactions between peptide side chains. (60/1299)

Several models for interactions between trifluoroethanol (TFE) and peptides and proteins have recently been proposed, but none have been able to rationalize the puzzling observations that on the one hand TFE can stabilize some hydrophobic interactions in secondary structures, but on the other can also melt the hydrophobic cores of globular proteins. The former is illustrated in this paper by the effect of TFE on a short elastin peptide, GVG(VPGVG)(3), which forms type II beta-turns stabilized by hydrophobic interactions between two intra-turn valine side chains. This folding, driven by increasing the entropy of bulk water, is stimulated in TFE-water mixtures and/or by raising the temperature. To explain these apparently contradictory observations, we propose a model in which TFE clusters locally assist the folding of secondary structures by first breaking down interfacial water molecules on the peptide and then providing a solvent matrix for further side chain--side chain interactions. This model also provides an explanation for TFE-induced transitions between secondary structures, in which the TFE clusters may redirect non-local to local interactions.  (+info)

Arterial fibrous proteins in cynomolgus monkeys after atherogenic and regression diets. (61/1299)

Fibrous proteins were measured in five arterial beds in adult cynomolgus monkeys after administration of atherogenic and regression regimens. Atherosclerosis was induced by feeding the monkeys a hypercholesterolemic diet containing 1.2% cholesterol for 17 months. A low-fat, cholesterol-free regression diet was then given for 60 days, 200 days, and 20 months. In atherosclerosis, collagen concentration (mg/g dry weight) and collagen content (mg/cm length of artery) both increased. At 200 days of regression the collagen concentration, but not the collagen content, was higher than it was in atherosclerosis. In late regression (20 months), the collagen content was lower than it was in atherosclerosis, although in the five arterial beds considered together the collagen concentration was not significantly lower. Both the elastin concentration and the elastin content rose in atherosclerosis and decreased in regression. These mass data suggest that fibrous proteins are lost from the arterial wall during a regression regimen. Correlative evidence suggests that younger intimal fibers may be chiefly susceptible to fibrolytic activity, leaving dense intimal scars characteristic of regressed arteries.  (+info)

Elastin: mutational spectrum in supravalvular aortic stenosis. (62/1299)

Supravalvular aortic stenosis (SVAS) is a congenital narrowing of the ascending aorta which can occur sporadically, as an autosomal dominant condition, or as one component of Williams syndrome. SVAS is caused by translocations, gross deletions and point mutations that disrupt the elastin gene (ELN) on 7q11.23. Functional hemizygosity for elastin is known to be the cause of SVAS in patients with gross chromosomal abnormalities involving ELN. However, the pathogenic mechanisms of point mutations are less clear. One hundred patients with diagnosed SVAS and normal karyotypes were screened for mutations in the elastin gene to further elucidate the molecular pathology of the disorder. Mutations associated with the vascular disease were detected in 35 patients, and included nonsense, frameshift, translation initiation and splice site mutations. The four missense mutations identified are the first of this type to be associated with SVAS. Here we describe the spectrum of mutations occurring in familial and sporadic SVAS and attempt to define the mutational mechanisms involved in SVAS. SVAS shows variable penetrance within families but the progressive nature of the disorder in some cases, makes identification of the molecular lesions important for future preventative treatments.  (+info)

The elastin-laminin receptor functions as a mechanotransducer in vascular smooth muscle. (63/1299)

Laminin and elastin, two major constituents of the extracellular matrix, bind to cells via the elastin-laminin receptor (ELR), a receptor distinct from integrins. Despite the ubiquitous nature of elastin and laminin in the matrix, the consequences of activation of the ELR are unknown. Because integrins are capable of mechanosensitive transduction, we hypothesized that the ELR would exert a similar function. Accordingly, we examined the effects of cyclical stretch on canine coronary smooth muscle gene expression and proliferation that are mediated by the ELR. Northern blot analyses showed a 31% decrease in serum-induced expression of c-fos when cells were stretched for 30 min on elastin, but no change in expression was observed on collagen. Serum-induced proliferation of stretched cells was markedly attenuated on elastin when compared with collagen. Both the molecular (decreased c-fos expression) and biological (decreased proliferation) responses on elastin were restored after blockade of the ELR with the elastin fragment hexapeptide (valine-glycine-valine-alanine-proline-glycine, VGVAPG). The inhibition was specific for this peptide, as another hydrophobic hexapeptide (valine-serine-leucine-serine-proline-glycine, VSLSPG) did not inhibit the responses. These results demonstrate that cyclic stretch inhibits c-fos expression and proliferation of coronary vascular smooth muscle cells grown on elastin matrixes, a mechanosensitive response that is transduced by the ELR.  (+info)

Conformational changes in fibrous elastin due to calcium ions. (64/1299)

A column packed with calcium-free bovine aorta elastin provided good separations of mixtures of bile salts when water was the moving phase. Tritium-labelled cholesterol was applied to the column using dilute solutions of taurodeoxycholate in Tris-NaCl buffers as solvent. The cholesterol was quantitatively eluted as a narrow peak in a rising gradient of taurodeoxycholate. When Na+ in the buffer was replaced by Ca2+ elution of the labelled cholesterol was delayed. Control experiments in which the elastin fibres were replaced as the column packing by an inert stationary phase consisting of n-butanol immobilized by silane-treated Celite showed that the effect of the change from Na+ to Ca2+ on the solvent properties of taurodeoxycholate was small and in the opposite direction. The experiments indicated that the replacement of sodium by calcium as the ionic environment of fibrous elastin produced a configurational change towards increasing hydrophobic character.  (+info)