Effect of diluent temperature on creatine kinase values found for lyophilized controls and reference sera. (9/4006)

We report the effect of temperature of diluent on creatine kinase activity in several lyophilized controls. Creatine kinase activity was significantly greater when the lyophilized control was reconstituted with diluent at 4 degrees C as compared to 25 degrees C. This is an additional source of variation in creatine kinase controls.  (+info)

Direct demonstration of the endocytic function of caveolae by a cell-free assay. (10/4006)

The endocytic function of caveolae was challenged by taking advantage of a cell-free assay directly measuring the detachment of receptor-containing vesicles from isolated plasma membranes. Plasma membranes from cultured cells surface-labeled with 125I-cholera toxin (segregating in caveolae) were isolated as described previously. Following incubation of these labeled membranes in the presence of nucleotide(s) and cytosol, a significant proportion of the initially membrane-associated radioactivity was released into the incubation medium in sedimentable form (14*10(6 )g). Results of biochemical, morphological, and fractionation analysis of the material containing the released radioactivity directly demonstrated that caveolae are plasma membrane domains involved in an endocytic process and resulting in the formation of caveolae-derived vesicles. In addition, these studies allowed a direct comparison of caveolae- and clathrin-coated pit-mediated endocytosis and reveal that these two processes diverge in terms of kinetics, cytosol and nucleotide requirements as well as in terms of the density and size of the endocytic vesicles formed.  (+info)

Effects of endotoxin on surfactant protein A and D stimulation of NO production by alveolar macrophages. (11/4006)

Surfactant protein (SP) A and SP-D affect numerous functions of immune cells including enhancing phagocytosis of bacteria and production of reactive species. Previous studies have shown that SP-A and SP-D bind to a variety of bacteria and to the lipopolysaccharide (LPS) components of their cell walls. In addition, purified preparations of SPs often contain endotoxin. The goals of this study were 1) to evaluate the effects of SP-A and SP-D and complexes of SPs and LPS on the production of nitric oxide metabolites by rat alveolar macrophages and 2) to evaluate methods for the removal of endotoxin with optimal recovery of SP. Incubation of SP-A or SP-D with polymyxin, 100 mM N-octyl-beta-D-glucopyranoside, and 2 mM EDTA followed by dialysis was the most effective method of those tested for reducing endotoxin levels. Commonly used storage buffers for SP-D, but not for SP-A, inhibited the detection of endotoxin. There was a correlation between the endotoxin content of the SP-A and SP-D preparations and their ability to stimulate production of nitrite by alveolar macrophages. SP-A and SP-D treated as described above to remove endotoxin did not stimulate nitrite production. These studies suggest that the functions of SP-A and SP-D are affected by endotoxin and illustrate the importance of monitoring SP preparations for endotoxin contamination.  (+info)

Coaggregation of Candida dubliniensis with Fusobacterium nucleatum. (12/4006)

The binding of microorganisms to each other and oral surfaces contributes to the progression of microbial infections in the oral cavity. Candida dubliniensis, a newly characterized species, has been identified in human immunodeficiency virus-seropositive patients and other immunocompromised individuals. C. dubliniensis phenotypically resembles Candida albicans in many respects yet can be identified and differentiated as a unique Candida species by phenotypic and genetic profiles. The purpose of this study was to determine oral coaggregation (CoAg) partners of C. dubliniensis and to compare these findings with CoAg of C. albicans under the same environmental conditions. Fifteen isolates of C. dubliniensis and 40 isolates of C. albicans were tested for their ability to coaggregate with strains of Fusobacterium nucleatum, Peptostreptococcus micros, Peptostreptococcus magnus, Peptostreptococcus anaerobius, Porphyromonas gingivalis, and Prevotella intermedia. When C. dubliniensis and C. albicans strains were grown at 37 degrees C on Sabouraud dextrose agar, only C. dubliniensis strains coaggregated with F. nucleatum ATCC 49256 and no C. albicans strains showed CoAg. However, when the C. dubliniensis and C. albicans strains were grown at 25 or 45 degrees C, both C. dubliniensis and C. albicans strains demonstrated CoAg with F. nucleatum. Heating the C. albicans strains (grown at 37 degrees C) at 85 degrees C for 30 min or treating them with dithiothreitol allowed the C. albicans strains grown at 37 degrees C to coaggregate with F. nucleatum. CoAg at all growth temperatures was inhibited by mannose and alpha-methyl mannoside but not by EDTA or arginine. The CoAg reaction between F. nucleatum and the Candida species involved a heat-labile component on F. nucleatum and a mannan-containing heat-stable receptor on the Candida species. The CoAg reactions between F. nucleatum and the Candida species may be important in the colonization of the yeast in the oral cavity, and the CoAg of C. dubliniensis by F. nucleatum when grown at 37 degrees C provides a rapid, specific, and inexpensive means to differentiate C. dubliniensis from C. albicans isolates in the clinical laboratory.  (+info)

Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103. (13/4006)

In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.  (+info)

Role of nitric oxide in indomethacin-induced gastric mucosal dysfunction in the rat. (14/4006)

The present study was undertaken to explore the role of nitric oxide (NO) in the pathogenesis of experimental non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy. We assessed the role of NO inhibition and donation in indomethacin-induced gastric mucosal dysfunction. The stomach was perfused with vehicle (control) for 20 min, followed by indomethacin (10 mg ml-1 in 1 25 % sodium bicarbonate, pH 8 4) for 120 min. NG-nitro-L-arginine methyl ester (L-NAME, 5 and 10 mg kg-1, I.V. bolus), L-arginine, D-arginine (100 mg kg-1 I.V. bolus, 10 mg kg-1 h-1, 2 h infusion) and the NO donor glyceryl trinitrate (GTN) were given at the same time (20, 40 and 80 microg kg-1 min-1, 15 min infusion) as perfusion with indomethacin was started. Epithelial permeability was quantified by measuring blood-to-lumen clearance of 51Cr-labelled EDTA. Indomethacin caused a 20-fold increase in 51Cr-EDTA leakage compared with that of the control group. Treatment with L-NAME or L-arginine did not affect the indomethacin-induced alterations in mucosal permeability. Administration of GTN (20 microg kg-1 min-1) significantly reduced the indomethacin-induced mucosal dysfunction. By contrast, higher doses of GTN (80 microg kg-1 min-1) exacerbated epithelial dysfunction induced by indomethacin. Elevated levels of carbonyls and myeloperoxidase (MPO) observed after indomethacin administration were significantly reduced, to the control values, when GTN (20 microg kg-1 min-1) was administered along with indomethacin. These data suggest that NO from exogenous sources can exert a dual action on the integrity of the gastric mucosa challenged by indomethacin. Low doses of GTN can prevent mucosal dysfunction induced by indomethacin, while higher doses of GTN may exacerbate the increases in epithelial permeability.  (+info)

When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. (15/4006)

The inclusion of uric acid in the incubation medium during copper-induced low-density lipoprotein (LDL) oxidation exerted either an antioxidant or pro-oxidant effect. The pro-oxidant effect, as mirrored by an enhanced formation of conjugated dienes, lipid peroxides, thiobarbituric acid-reactive substances and increase in negative charge, occurred when uric acid was added late during the inhibitory or lag phase and during the subsequent extensive propagation phase of copper-stimulated LDL oxidation. The pro-oxidant effect of uric acid was specific for copper-induced LDL oxidation and required the presence of copper as either Cu(I) or Cu(II). In addition, it became much more evident when the copper to LDL molar ratio was below a threshold value of approx. 50. In native LDL, the shift between the antioxidant and the pro-oxidant activities was related to the availability of lipid hydroperoxides formed during the early phases of copper-promoted LDL oxidation. The artificial enrichment of isolated LDL with alpha-tocopherol delayed the onset of the pro-oxidant activity of uric acid and also decreased the rate of stimulated lipid peroxidation. However, previous depletion of alpha-tocopherol was not a prerequisite for unmasking the pro-oxidant activity of uric acid, since this became apparent even when alpha-tocopherol was still present in significant amounts (more than 50% of the original values) in LDL. These results suggest, irrespective of the levels of endogenous alpha-tocopherol, that uric acid may enhance LDL oxidation by reducing Cu(II) to Cu(I), thus making more Cu(I) available for subsequent radical decomposition of lipid peroxides and propagation reactions.  (+info)

Effect of rate of calcium reduction and a hypocalcemic clamp on parathyroid hormone secretion: a study in dogs. (16/4006)

BACKGROUND: The parathyroid hormone (PTH) calcium curve is used to evaluate parathyroid function in clinical studies. However, unanswered questions remain about whether PTH secretion is affected by the rate of calcium reduction and how the maximal PTH response to hypocalcemia is best determined. We performed studies in normal dogs to determine whether (a) the rate of calcium reduction affected the PTH response to hypocalcemia and (b) the reduction in PTH values during a hypocalcemic clamp from the peak PTH value observed during the nadir of hypocalcemia was due to a depletion of stored PTH. METHODS: Fast (30 min) and slow (120 min) ethylenediamine-tetraacetic acid (EDTA) infusions were used to induce similar reductions in ionized calcium. In the fast EDTA infusion group, serum calcium was maintained at the hypocalcemic 30-minute value for an additional 90 minutes (hypocalcemic clamp). To determine whether the reduction in PTH values during the hypocalcemic clamp represented depletion of PTH stores, three subgroups were studied. Serum calcium was rapidly reduced from established hypocalcemic levels in the fast-infusion group at 30 and 60 minutes (after 30 min of a hypocalcemic clamp) and in the slow-infusion group at 120 minutes. RESULTS: At the end of the fast and slow EDTA infusions, serum ionized calcium values were not different (0.84 +/- 0.02 vs. 0.82 +/- 0.03 mM), but PTH values were greater in the fast-infusion group (246 +/- 19 vs. 194 +/- 13 pg/ml, P < 0.05). During the hypocalcemic clamp, PTH rapidly decreased (P < 0.05) to value of approximately 60% of the peak PTH value obtained at 30 minutes. A rapid reduction in serum calcium from established hypocalcemic levels at 30 minutes did not stimulate PTH further, but also PTH values did not decrease as they did when a hypocalcemic clamp was started at 30 minutes. At 60 minutes, the reduction in serum calcium increased (P < 0.05) PTH to peak values similar to those before the hypocalcemic clamp. The reduction in serum calcium at 120 minutes in the slow EDTA infusion group increased PTH values from 224 +/- 11 to 302 +/- 30 pg/ml (P < 0.05). CONCLUSIONS: These results suggest that (a) the reduction in PTH values during the hypocalcemic clamp may not represent a depletion of PTH stores. (b) The use of PTH values from the hypocalcemic clamp as the maximal PTH may underestimate the maximal secretory capacity of the parathyroid glands and also would change the analysis of the PTH-calcium curve, and (c) the PTH response to similar reductions in serum calcium may be less for slow than fast reductions in serum calcium.  (+info)