Hydrolysis and synthesis of substrate proteins for cathepsin L in the brain basement membranes of Sarcophaga during metamorphosis. (33/349)

Previously, we identified two proteins with molecular masses of 200 and 210 kDa in basement membranes of Sarcophaga imaginal discs as substrates for cathepsin L [Homma, K. and Natori, S. (1996) Eur. J. Biochem. 240, 443-447]. Here we demonstrated that the same proteins were also present in the basement membranes of larval brains. These proteins were suggested to be digested by cathepsin L secreted from the larval brains in response to 20-HE. From the behavior of these proteins during metamorphosis, we concluded that the basement membranes of larval brains are degraded at the early pupal stage and synthesized again at the late pupal stage, coinciding with the timing of brain remodeling that takes place during metamorphosis. Possibly, the transient disappearance of the basement membranes makes brain remodeling easier, and cathepsin L is suggested to play a crucial role in the degradation of the basement membranes.  (+info)

Ecdysteroids regulate secretory competence in Inka cells. (34/349)

Ecdysis, or molting behavior, in insects requires the sequential action of high levels of ecdysteroids, which induce accumulation of ecdysis-triggering hormone (ETH) in Inka cells, followed by low levels of ecdysteroids, permissive for the onset of the behavior. Here, we show that high ecdysteroid levels suppress the onset of the behavioral sequence by inhibiting the development of competence to secrete ETH. In pharate pupae of Manduca sexta, Inka cells in the epitracheal glands normally develop competence to secrete ETH in response to eclosion hormone (EH) 8 h before pupation. Injection of 20-hydroxyecdysone (20E) into precompetent insects prevents this acquisition of competence, but does not affect EH-evoked accumulation of the second messenger cyclic GMP. Precompetent glands acquire competence in vitro after overnight culture, and this can be prevented by the inclusion of 20E at concentrations greater than 0.1 microg ml(-1)in the culture medium. Actinomycin D completely inhibits the acquisition of competence, demonstrating that it is dependent on transcriptional events. Cultured epitracheal glands become refractory to the inhibitory effects of 20E in the acquisition of competence at least 3 h earlier than for Actinomycin D, indicating that 20E acts on an early step in a sequence of nuclear events leading to transcription of a structural gene. Our findings suggest that declining ecdysteroid levels permit a late event in transcription, the product of which is downstream of EH receptor activation and cyclic GMP accumulation in the cascade leading to ETH secretion.  (+info)

The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. (35/349)

Ecdysteroids regulate a wide variety of cellular processes during arthropod development, yet little is known about the genes involved in the biosynthesis of these hormones. Previous studies have suggested that production of 20-hydroxyecdysone in Drosophila and other arthropods involves a series of cytochrome P450 catalyzed hydroxylations of cholesterol. In this report, we show that the disembodied (dib) locus of Drosophila codes for a P450-like sequence. In addition, we find that dib mutant embryos have very low titers of ecdysone and 20-hydroxyecdysone (20E) and fail to express IMP-E1 and L1, two 20E-inducible genes, in certain tissues of the embryo. In situ hybridization studies reveal that dib is expressed in a complex pattern in the early embryo, which eventually gives way to restricted expression in the prothoracic portion of the ring gland. In larval and adult tissues, dib expression is observed in the prothoracic gland and follicle cells of the ovaries respectively, two tissues known to synthesize ecdysteroids. Phenotypic analysis reveals that dib mutant embryos produce little or no cuticle and exhibit severe defects in many late morphogenetic processes such as head involution, dorsal closure and gut development. In addition, we examined the phenotypes of several other mutants that produce defective embryonic cuticles. Like dib, mutations in the spook (spo) locus result in low embryonic ecdysteroid titers, severe late embryonic morphological defects, and a failure to induce IMP-E1. From these data, we conclude that dib and spo likely code for essential components in the ecdysone biosynthetic pathway and that ecdysteroids regulate many late embryonic morphogenetic processes such as cell movement and cuticle deposition.  (+info)

Proapoptotic p53-interacting protein 53BP2 is induced by UV irradiation but suppressed by p53. (36/349)

p53 is an important mediator of the cellular stress response with roles in cell cycle control, DNA repair, and apoptosis. 53BP2, a p53-interacting protein, enhances p53 transactivation, impedes cell cycle progression, and promotes apoptosis through unknown mechanisms. We now demonstrate that endogenous 53BP2 levels increase following UV irradiation induced DNA damage in a p53-independent manner. In contrast, we found that the presence of a wild-type (but not mutant) p53 gene suppressed 53BP2 steady-state levels in cell lines with defined p53 genotypes. Likewise, expression of a tetracycline-regulated wild-type p53 cDNA in p53-null fibroblasts caused a reduction in 53BP2 protein levels. However, 53BP2 levels were not reduced if the tetracycline-regulated p53 cDNA was expressed after UV damage in these cells. This suggests that UV damage activates cellular factors that can relieve the p53-mediated suppression of 53BP2 protein. To address the physiologic significance of 53BP2 induction, we utilized stable cell lines with a ponasterone A-regulated 53BP2 cDNA. Conditional expression of 53BP2 cDNA lowered the apoptotic threshold and decreased clonogenic survival following UV irradiation. Conversely, attenuation of endogenous 53BP2 induction with an antisense oligonucleotide resulted in enhanced clonogenic survival following UV irradiation. These results demonstrate that 53BP2 is a DNA damage-inducible protein that promotes DNA damage-induced apoptosis. Furthermore, 53BP2 expression is highly regulated and involves both p53-dependent and p53-independent mechanisms. Our data provide new insight into 53BP2 function and open new avenues for investigation into the cellular response to genotoxic stress.  (+info)

Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. (37/349)

Mutations of the alpha-synuclein gene have been identified in autosomal dominant Parkinson's disease (PD). Transgenic mice overexpressing wild-type human alpha-synuclein develop motor impairments, intraneuronal inclusions and loss of dopaminergic terminals in the striatum. To study the mechanism of action through which mutant alpha-synuclein toxicity is mediated, we have generated stable, inducible cell models expressing wild-type or PD-associated mutant (G209A) alpha-synuclein in human-derived HEK293 cells. Increased expression of either wild-type or mutant alpha-synuclein resulted in the formation of cytoplasmic aggregates which were associated with the vesicular (including monoaminergic) compartment. Expression of mutant alpha-synuclein induced a significant increase in sensitivity to dopamine toxicity compared with the wild-type protein expression. These results provide an explanation for the preferential dopaminergic neuronal degeneration seen in both the PD G209A mutant alpha-synuclein families and suggest that similar mechanisms may underlie or contribute to cell death in sporadic PD.  (+info)

Patterns of MHR3 expression in the epidermis during a larval molt of the tobacco hornworm Manduca sexta. (38/349)

MHR3, an ecdysone-induced transcription factor, was shown to appear in the abdominal epidermis of the tobacco hornworm Manduca sexta in a pattern-specific manner as the 20-hydroxyecdysone (20E) titer rises for the larval molt. The crochet epidermis that forms the hooked setae on the proleg is first to show MHR3 mRNA and protein followed sequentially by the spiracle, the dorsal intrasegmental annuli, the interannular regions, and finally the trichogen and tormogen cells. The protein appears in the nuclei about 8 h before the onset of cuticle formation, is present during the outgrowth of the setae, and disappears after epicuticle formation. In vitro studies showed that MHR3 mRNA induction in the crochet epidermis by 20E was more sensitive (EC(50) = 10(-6) M; 50% induction by 2 h exposure to 4 x 10(-6) M 20E) and did not require protein synthesis for maximal accumulation compared to the dorsal epidermis. The ecdysone receptor complex is present in both tissues at the outset of the molt and therefore is not a determining factor in these responses. Thus, in addition to the ecdysone receptor complex, region-specific factors govern both sensitivity and timing of responsiveness of MHR3 to 20E to ensure that this transcription factor will be present when needed for its differentiative role.  (+info)

Molecular cloning of NADPH-cytochrome P450 oxidoreductase from silkworm eggs. Its involvement in 20-hydroxyecdysone biosynthesis during embryonic development. (39/349)

Using RT-PCR, a cDNA fragment of NADPH-cytochrome P450 oxidoreductase from silkworm, Bombyx mori, was cloned from three-day-old nondiapause eggs. RACE was used to isolate the ends of the DNA. The full-length cDNA obtained was composed of 3471 bp with an open reading frame encoding a protein of 687 amino-acid residues with a relative molecular mass of 77 700. The protein, fused with glutathione S-transferase, was expressed in Escherichia coli and purified to homogeneity. The fused protein not only had NADPH-dependent cytochrome c-reducing activity, but also acted as an electron carrier from NADPH to bovine adrenal 21-hydroxylase P450 in the steroid hydroxylation reaction, confirming that the protein is the silkworm NADPH-cytochrome P450 oxidoreductase. Ecdysone 20-hydroxylase activity in the nondiapause egg microsomes increased until the fourth day after oviposition, and then decreased, little being detected on the ninth day. An antibody raised against the P450 reductase inhibited the ecdysone hydroxylation. Immunoblot analyses of the microsomes indicated that the P450 reductase protein appeared distinctly in the three-day-old nondiapause eggs and, in contrast to the developmental pattern of ecdysone hydroxylase activity, continued to increase as the embryos developed. These results suggest that ecdysone hydroxylation in the early stage of embryogenesis is dependent on the presence of both P450 reductase and ecdysone 20-hydroxylase P450, but its gradual reduction in the later stage may be due to the decrease in the level of ecdysone 20-hydroxylase P450.  (+info)

Insect metamorphosis: out with the old, in with the new. (40/349)

During insect metamorphosis, the steroid hormone ecdysone activates programmed cell death of larval tissues and the further development of adult tissues. Recent studies suggest that the E93 gene is both necessary and sufficient to target tissues for ecdysone-induced apoptosis.  (+info)