Biotransformations of putative phytoecdysteroid biosynthetic precursors in tissue cultures of Polypodium vulgare. (17/349)

Incubation of calli and prothalli of Polypodium vulgare with different tritium-labelled ecdysteroids has led to modification of some previous assumptions about the biosynthesis of ecdysteroids in plants. Thus, 25-deoxy-20-hydroxyecdysone was transformed efficiently in both tissues into 20-hydroxyecdysone (20E), but no 25-deoxyecdysteroids such as pterosterone and inokosterone were formed. Likewise, incubation of 2-deoxyecdysone (2dE) produced exclusively ecdysone (E) and 20E, indicating a high 2-hydroxylase activity in both tissues, despite calli not producing phytoecdysteroids. This 2-hydroxylation was also evident in the transformation of 2,22-dideoxyecdysone (2,22dE) into 22-deoxyecdysone (22dE). Different ecdysteroids that do not occur in P. vulgare were formed in the incubation of 3-dehydro-2,22,25-trideoxyecdysone (3D2,22,25dE) by 3alpha-reduction and 3beta-reduction and 25-hydroxylation processes. The fact that 22,25-dideoxyecdysone and 22dE were the only 2-hydroxylated products formed in this case suggests that only compounds bearing a 3beta-hydroxyl group are substrates for the 2-hydroxylase. Surprisingly, 22-hydroxylation was never observed with either 2,22dE or 3D2,22,25dE, raising the possibility that it could occur at an early step in the biosynthetic pathway. In this respect, labelled 22R-hydroxycholesterol was efficiently converted into E and 20E, whereas 22S-hydroxycholesterol was not transformed into ecdysteroids, because of its unsuitable configuration at C22. Finally, the conversion of 25-hydroxycholesterol into E and 20E was greatly enhanced after thermal treatment of prothalli which induces the release of previously stored ecdysteroids. Thus, P. vulgare prothalli and calli appear to be particularly suitable models for the study of ecdysteroid biosynthesis and its regulation in plants.  (+info)

Spider hemocyanin binds ecdysone and 20-OH-ecdysone. (18/349)

Fluorescence quenching studies and binding experiments with [(3)H]ecdysone reveal that the respiratory protein, hemocyanin, of the tarantula Eurypelma californicum binds ecdysone. The binding constant for ecdysone ranges between 0.5 and 5 mM, indicating a low affinity binding. However, it is comparable with those found for the ecdysone binding to hexamerins from insects. Based on a comparison of sequences and x-ray structures of arthropodan hemocyanins, we propose an evolutionary conserved hydrophobic pocket in domain 1 of the hemocyanin subunit that may bind ecdysone.  (+info)

Antiproliferative function of p27kip1 is frequently inhibited in highly malignant Burkitt's lymphoma cells. (19/349)

Lack of detectable expression of p27kip1 cyclin dependent kinase inhibitor has previously been correlated with high degree of malignancy in human breast, colorectal, gastric and small cell lung carcinomas. Here we demonstrate that an inverse correlation between p27kip1 expression and tumour malignancy also exists in most types of human B cell lymphomas examined. A clear exception was Burkitt's lymphoma (BL), a highly malignant tumour which often expresses high levels of p27kip1. Analysis of p27kip1 derived from Burkitt's lymphoma cell lines expressing high levels of p27kip1, BL40 and BL41, in a cyclin E/cdk2 kinase inhibition assay demonstrated that p27kip1 is not permanently inactivated since heat treatment can restore the inhibitory activity of p27kip1. However, p27kip1 expressed in these two cell lines is largely sequestered in inactive complexes and we have no evidence that c-myc or Epstein-Barr virus are responsible for the sequestration of p27kip1 in these two cell lines although c-myc and EBV are two oncogenic agents often associated with Burkitt's lymphomas. Interestingly, we observed that high level p27kip1 expression often correlated with cyclin D3 overexpression both in vivo and in BL cell lines. The majority of p27kip1 in BL40 cells was complexed with cyclin D3 indicating that overexpressed cyclin D3 may at least be part of the sequestering activity for the inhibitory function of p27kip1. Furthermore, cyclinD3/cdk4 complex could sequester p27kip1 in a cyclin E/cdk2 kinase assay in vitro. Finally, we show that cyclin D3 transfected into an inducible p27kip1 cell line could overcome the G1 arrest mediated by p27kip1. These results argue that in addition to down-regulation of p27kip1 expression, some tumour cells can sequester and tolerate the antiproliferative function of p27kip1. They also suggest a novel role for the overexpression of D-type cyclins as one pathway allowing tumour cells to overcome the antiproliferative function of p27kip1.  (+info)

AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti. (20/349)

In anautogenous mosquitoes, vitellogenesis, the key event in egg maturation, requires a blood meal. Consequently, mosquitoes are vectors of numerous devastating human diseases. After ingestion of blood, 20-hydroxyecdysone activates yolk protein precursor (YPP) genes in the metabolic tissue, the fat body. An important adaptation for anautogenicity is the previtellogenic developmental arrest (the state-of-arrest) preventing the activation of YPP genes in previtellogenic females prior to blood feeding. Here, we show that a retinoid X receptor homolog, Ultraspiracle (AaUSP), which is an obligatory partner in the functional ecdysteroid receptor, exists at the state-of-arrest as a heterodimer with the orphan nuclear receptor AHR38, a homolog of Drosophila DHR38 and nerve growth factor-induced protein B. Yeast two-hybrid and glutathione S-transferase pull-down assays demonstrate that AHR38 can interact strongly with AaUSP. AHR38 also disrupts binding of ecdysteroid receptor to ecdysone response elements. Cell co-transfection of AHR38 with AaEcR and AaUSP inhibits ecdysone-dependent activation of a reporter gene by the ecdysteroid receptor. Co-immunoprecipitation experiments indicate that AaUSP protein associates with AHR38 instead of AaEcR in fat body nuclei at the state-of-arrest.  (+info)

Differential expression and regulation by 20-hydroxyecdysone of mosquito ultraspiracle isoforms. (21/349)

Ultraspiracle (USP), the insect homologue of the vertebrate retinoid X receptor, is an obligatory dimerization partner for the ecdysteroid receptor (EcR). Two USP isoforms, USP-A and USP-B, with distinct N-termini, occur in the mosquito Aedes aegypti. In the fat body and ovary, USP-A mRNA is highly expressed during the pre- and late vitellogenic stages, corresponding to a period of low ecdysteroid titer, while USP-B mRNA exhibits its highest levels during the vitellogenic period, correlating with a high ecdysteroid titer. Remarkably, 20-hydroxyecdysone (20E) has opposite effects on USP isoform transcripts in in vitro fat body culture. This steroid hormone upregulates USP-B transcription and its presence is required to sustain a high level of USP-B expression. In contrast, 20E inhibits activation of USP-A transcription. Although EcR.USP-A recognizes the same ecdysteroid-responsive elements, EcR.USP-B binds them with an affinity twofold higher than that of EcR.USP-A. Likewise, EcR.USP-B transactivates a reporter gene in CV-1 cells twofold more strongly than EcR.USP-A. These results suggest that USP-B functions as a major heterodimerization partner for EcR during the vitellogenic response to 20E in the mosquito.  (+info)

Mammalian 5'(3')-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells. (22/349)

5'(3')-Deoxyribonucleotidase is a ubiquitous enzyme in mammalian cells whose physiological function is not known. It was earlier purified to homogeneity from human placenta. We determined the amino acid sequences of several internal peptides and with their aid found an expressed sequence tag clone with the complete cDNA for a murine enzyme of 23.9 kDa. The DNA was cloned into appropriate plasmids and introduced into Escherichia coli and ecdyson-inducible 293 and V79 cells. The recombinant enzyme was purified to homogeneity from transformed E. coli and was found to be identical with the native enzyme. After induction with ponasterone, the transfected mammalian cells showed a gradual increase of enzyme activity. A human expressed sequence tag clone contained a large part of the cDNA of the human enzyme but lacked the 5'-end corresponding to 51 amino acids of the murine enzyme. Several polymerase chain reaction-based approaches to find this sequence met with no success. A mouse/human hybrid cDNA that had substituted the missing human 5'-end with the corresponding mouse sequence coded for a fully active enzyme.  (+info)

The RXR ortholog USP suppresses early metamorphic processes in Drosophila in the absence of ecdysteroids. (23/349)

The steroid hormone 20-hydroxyecdysone (20E) initiates metamorphosis in insects by signaling through the ecdysone receptor complex, a heterodimer of the ecdysone receptor (EcR) and ultraspiracle (USP). Analysis of usp mutant clones in the wing disc of Drosophila shows that in the absence of USP, early hormone responsive genes such as EcR, DHR3 and E75B fail to up-regulate in response to 20E, but other genes that are normally expressed later, such as (&bgr;)-Ftz-F1 and the Z1 isoform of the Broad-Complex (BRC-Z1), are expressed precociously. Sensory neuron formation and axonal outgrowth, two early metamorphic events, also occur prematurely. In vitro experiments with cultured wing discs showed that BRC-Z1 expression and early metamorphic development are rendered steroid-independent in the usp mutant clones. These results are consistent with a model in which these latter processes are induced by a signal arising during the middle of the last larval stage but suppressed by the unliganded EcR/USP complex. Our observations suggest that silencing by the unliganded EcR/USP receptor and the subsequent release of silencing by moderate steroid levels may play an important role in coordinating early phases of steroid driven development.  (+info)

Molecular chaperones activate the Drosophila ecdysone receptor, an RXR heterodimer. (24/349)

The steroid hormone 20-hydroxyecdysone coordinates the stages of Drosophila development by activating a nuclear receptor heterodimer consisting of the ecdysone receptor, EcR, and the Drosophila RXR receptor, USP. We show that EcR/USP DNA binding activity requires activation by a chaperone heterocomplex like that required for activation of the vertebrate steroid receptors, but not previously shown to be required for activation of RXR heterodimers. Six proteins normally present in the chaperone complex were individually purified and shown to be sufficient for this activation. We also show that two of the six (Hsp90 and Hsc70) are required in vivo for ecdysone receptor activity, and that EcR is the primary target of the chaperone complex.  (+info)