Ebola virus infection inversely correlates with the overall expression levels of promyelocytic leukaemia (PML) protein in cultured cells. (73/581)

BACKGROUND: Ebola virus causes severe, often fatal hemorrhagic fever in humans. The mechanism of escape from cellular anti-viral mechanisms is not yet fully understood. The promyelocytic leukaemia (PML) associated nuclear body is part of the interferon inducible cellular defense system. Several RNA viruses have been found to interfere with the anti-viral function of the PML body. The possible interaction between Ebola virus and the PML bodies has not yet been explored. RESULTS: We found that two cell lines, Vero E6 and MCF7, support virus production at high and low levels respectively. The expression of viral proteins was visualized and quantified using high resolution immunofluorescence microscopy. Ebola encoded NP and VP35 accumulated in cytoplasmic inclusion bodies whereas VP40 was mainly membrane associated but it was also present diffusely in the cytoplasm as well as in the euchromatic areas of the nucleus. The anti-VP40 antibody also allowed the detection of extracellular virions. Interferon-alpha treatment decreased the production of all three viral proteins and delayed the development of cytopathic effects in both cell lines. Virus infection and interferon-alpha treatment induced high levels of PML protein expression in MCF7 but much less in Vero E6 cells. No disruption of PML bodies, a common phenomenon induced by a variety of different viruses, was observed. CONCLUSION: We have established a simple fixation and immunofluorescence staining procedure that allows specific co-detection and precise sub-cellular localization of the PML nuclear bodies and the Ebola virus encoded proteins NP, VP35 and VP40 in formaldehyde treated cells. Interferon-alpha treatment delays virus production in vitro. Intact PML bodies may play an anti-viral role in Ebola infected cells.  (+info)

Ebola haemorrhagic fever among hospitalised children and adolescents in northern Uganda: epidemiologic and clinical observations. (74/581)

BACKGROUND: A unique feature of previous Ebola outbreaks has been the relative sparing of children. For the first time, an out break of an unusual illness-Ebola haemorrhagic fever occurred in Northern Uganda Gulu district. OBJECTIVES: To describe the epidemiologic and clinical aspects of hospitalised children and adolescents on the isolation wards. METHODS: A retrospective descriptive survey of hospital records for hospitalised children and adolescents under 18 years on the isolation wards in Gulu, Northern Uganda was conducted. All patient test notes were consecutively reviewed and non was excluded because being deficient. RESULTS: Analysis revealed that 90 out of the 218 national laboratory confirmed Ebola cases were children and adolescents with a case fatality of 40%. The mean age was 8.2 years +/- SD 5.6 with a range of 16.99 years. The youngest child on the isolation wards was 3 days old. The under fives contributed the highest admission (35%) among children and adolescents; and case fatality because of prolonged close contact with the seropositive relatives among the laboratory confirmed cases. All (100%) Ebola positive children and adolescents were febrile while only 16% had hemorrhagic manifestations. CONCLUSION: Similar to previous Ebola outbreaks, a relative sparing of children in this outbreak was observed. The under fives were at an increased risk of contact with the sick and dying. RECOMMENDATIONS: Strategies to shield children from exposure to dying and sick Ebola relatives are recommended in the event of future Ebola outbreaks. Health education to children and adolescents to avoid contact with sick and their body fluids should be emphasized.  (+info)

Antibody-dependent enhancement of Ebola virus infection. (75/581)

Most strains of Ebola virus cause a rapidly fatal hemorrhagic disease in humans, yet there are still no biologic explanations that adequately account for the extreme virulence of these emerging pathogens. Here we show that Ebola Zaire virus infection in humans induces antibodies that enhance viral infectivity. Plasma or serum from convalescing patients enhanced the infection of primate kidney cells by the Zaire virus, and this enhancement was mediated by antibodies to the viral glycoprotein and by complement component C1q. Our results suggest a novel mechanism of antibody-dependent enhancement of Ebola virus infection, one that would account for the dire outcome of Ebola outbreaks in human populations.  (+info)

Immunoglobulin G enzyme-linked immunosorbent assay using truncated nucleoproteins of Reston Ebola virus. (76/581)

We developed an immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), using partial recombinant nucleoproteins (rNP) of Reston Ebola virus (EBO-R) and Zaire Ebola virus (EBO-Z). We examined the reaction of 10 sera from cynomolgus macaques naturally infected with EBO-R to each of the partial rNP in the IgG ELISA. All the sera reacted to the C-terminal halves of the rNP of both EBO-R and EBO-Z. Most of the sera reacted to the RdeltaC (amino acid (aa) 360-739), and Rdelta6 (aa 451-551) and/or Rdelta8 (aa 631-739) at a higher dilution than to the corresponding truncated rNPs of EBO-Z. The results indicate that this IgG ELISA is useful for detecting EBO-R specific antibody, and may have a potential to discriminate EBO-R infection from other subtypes.  (+info)

The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. (77/581)

The Ebola virus VP35 protein was previously found to act as an interferon (IFN) antagonist which could complement growth of influenza delNS1 virus, a mutant influenza virus lacking the influenza virus IFN antagonist protein, NS1. The Ebola virus VP35 could also prevent the virus- or double-stranded RNA-mediated transcriptional activation of both the beta IFN (IFN-beta) promoter and the IFN-stimulated ISG54 promoter (C. Basler et al., Proc. Natl. Acad. Sci. USA 97:12289-12294, 2000). We now show that VP35 inhibits virus infection-induced transcriptional activation of IFN regulatory factor 3 (IRF-3)-responsive mammalian promoters and that VP35 does not block signaling from the IFN-alpha/beta receptor. The ability of VP35 to inhibit this virus-induced transcription correlates with its ability to block activation of IRF-3, a cellular transcription factor of central importance in initiating the host cell IFN response. We demonstrate that VP35 blocks the Sendai virus-induced activation of two promoters which can be directly activated by IRF-3, namely, the ISG54 promoter and the ISG56 promoter. Further, expression of VP35 prevents the IRF-3-dependent activation of the IFN-alpha4 promoter in response to viral infection. The inhibition of IRF-3 appears to occur through an inhibition of IRF-3 phosphorylation. VP35 blocks virus-induced IRF-3 phosphorylation and subsequent IRF-3 dimerization and nuclear translocation. Consistent with these observations, Ebola virus infection of Vero cells activated neither transcription from the ISG54 promoter nor nuclear accumulation of IRF-3. These data suggest that in Ebola virus-infected cells, VP35 inhibits the induction of antiviral genes, including the IFN-beta gene, by blocking IRF-3 activation.  (+info)

Antigen capture enzyme-linked immunosorbent assay for specific detection of Reston Ebola virus nucleoprotein. (78/581)

Antigen capture enzyme-linked immunosorbent assay (ELISA) is one of the most useful methods to detect Ebola virus rapidly. We previously developed an antigen capture ELISA using a monoclonal antibody (MAb), 3-3D, which reacted not only to the nucleoprotein (NP) of Zaire Ebola virus (EBO-Z) but also to the NPs of Sudan (EBO-S) and Reston Ebola (EBO-R) viruses. In this study, we developed antigen capture ELISAs using two novel MAbs, Res2-6C8 and Res2-1D8, specific to the NP of EBO-R. Res2-6C8 and Res2-1D8 recognized epitopes consisting of 4 and 8 amino acid residues, respectively, near the C-terminal region of the EBO-R NP. The antigen capture ELISAs using these two MAbs detected the EBO-R NP in the tissues from EBO-R-infected cynomolgus macaques. The antigen capture ELISAs using Res2-6C8 and Res2-1D8 are useful for the rapid detection of the NP in EBO-R-infected cynomolgus macaques.  (+info)

Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. (79/581)

Transcription of Ebola virus (EBOV)-specific mRNA is driven by the nucleocapsid proteins NP, VP35, and L. This process is further dependent on VP30, an essential EBOV-specific transcription factor. The present study addresses the self-assembly of VP30 and the functional significance of this process for viral transcription and propagation. Essential for oligomerization of VP30 is a region spanning amino acids 94-112. Within this region a cluster of four leucine residues is of critical importance. Mutation of only one of these leucine residues resulted in oligomerization-deficient VP30 molecules that were no longer able to support EBOV-specific transcription. The essential role of homo-oligomerization for the function of VP30 was further corroborated by the finding that mixed VP30 oligomers consisting of VP30 and transcriptionally inactive VP30 mutants were impaired in their ability to support EBOV transcription. The dominant negative effect of these VP30 mutants was dependent on their ability to bind to VP30. The oligomerization of VP30 could be dose dependently inhibited by a 25-mer peptide (E30pep-wt) derived from the presumed oligomerization domain (IC50,1 mum). A control peptide (E30pep-3LA), in which three leucines were changed to alanine, had no inhibitory effect. Thus, E30pep-wt seemed to bind efficiently to VP30 and consequently blocked the oligomerization of the protein. When E30pep-wt was transfected into EBOV-infected cells, the peptide inhibited viral replication suggesting that inhibition of VP30 oligomerization represents a target for EBOV antiviral drugs.  (+info)

Oligomerization and polymerization of the filovirus matrix protein VP40. (80/581)

The matrix protein VP40 from Ebola virus plays an important role in the assembly process of virus particles by interacting with cellular factors, cellular membranes, and the ribonuclearprotein particle complex. Here we show that the N-terminal domain of VP40 folds into a mixture of two different oligomeric states in vitro, namely hexameric and octameric ringlike structures, as detected by gel filtration chromatography, chemical cross-linking, and electron microscopy. Octamer formation depends largely on the interaction with nucleic acids, which in turn confers in vitro SDS resistance. Refolding experiments with a nucleic acid free N-terminal domain preparation reveal a mostly dimeric form of VP40, which is transformed into an SDS resistant octamer upon incubation with E. coli nucleic acids. In addition, we demonstrate that the N-terminal domain of Marburg virus VP40 also folds into ringlike structures, similar to Ebola virus VP40. Interestingly, Marburg virus VP40 rings reveal a high tendency to polymerize into rods composed of stacked rings. These results may suggest distinct roles for different oligomeric forms of VP40 in the filovirus life cycle.  (+info)