A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. (17/581)

VP40, the putative matrix protein of both Ebola and Marburg viruses, possesses a conserved proline-rich motif (PY motif) at its N terminus. We demonstrate that the VP40 protein can mediate its own release from mammalian cells, and that the PY motif is important for this self-exocytosis (budding) function. In addition, we used Western-ligand blotting to demonstrate that the PY motif of VP40 can mediate interactions with specific cellular proteins that have type I WW-domains, including the mammalian ubiquitin ligase, Nedd4. Single point mutations that disrupted the PY motif of VP40 abolished the PY/WW-domain interactions. Significantly, the full-length VP40 protein was shown to interact both physically and functionally with full-length Rsp5, a ubiquitin ligase of yeast and homolog of Nedd4. The VP40 protein was multiubiquitinated by Rsp5 in a PY-dependent manner in an in vitro ubiquitination assay. These data demonstrate that the VP40 protein of Ebola virus possesses a PY motif that is functionally similar to those described previously for Gag and M proteins of specific retroviruses and rhabdoviruses, respectively. Last, these studies imply that VP40 likely plays an important role in filovirus budding, and that budding of retroviruses, rhabdoviruses, and filoviruses may proceed via analogous mechanisms.  (+info)

Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. (18/581)

Filoviruses, including Ebola virus, are cytotoxic. To investigate the role of the Ebola virus glycoprotein (GP) in this cytopathic effect, we transiently expressed the GP in human kidney 293T cells. Expression of wild-type GP, but not the secretory form of the molecule lacking a membrane anchor, induced rounding and detachment of the cells, as did a chimeric GP containing its ectodomain and influenza virus hemagglutinin transmembrane-cytoplasmic domain. These results indicate that the GP ectodomain and its anchorage to the membrane are required for GP-induced morphologic changes in host cells. Since cell rounding and detachment could be associated with reduced levels of cell adhesion molecules, we also studied the expression of integrins, which are major molecules for adhesion to extracellular matrices, and found that the beta1 integrin group is downregulated by the GP. This result was further extended by experiments in which anti-beta1 monoclonal antibodies or purified integrins inhibited the infectivity of vesicular stomatitis virus pseudotyped with the GP. We suggest that integrins, especially the beta1 group, might interact with the GP and perhaps be involved in Ebola virus entry into cells.  (+info)

Membrane association induces a conformational change in the Ebola virus matrix protein. (19/581)

The matrix protein VP40 from Ebola virus is targeted to the plasma membrane, where it is thought to induce assembly and budding of virions through its association with the lipid bilayer. Ebola virus VP40 is expressed as a monomeric molecule in solution, consisting of two loosely associated domains. Here we show that a C-terminal truncation of seven residues destabilizes the monomeric closed conformation and induces spontaneous hexamerization in solution, as indicated by chemical cross-linking and electron microscopy. Three-dimensional reconstruction of electron microscopy images shows ring-like structures consisting of the N-terminal domain along with evidence for flexibly attached C-terminal domains. In vitro destabilization of the monomer by urea treatment results in similar hexameric molecules in solution. In addition, we demonstrate that membrane association of wild-type VP40 also induces the conformational switch from monomeric to hexameric molecules that may form the building blocks for initiation of virus assembly and budding. Such a conformational change induced by bilayer targeting may be a common feature of many viral matrix proteins and its potential inhibition may result in new anti-viral therapies.  (+info)

Enzyme-linked immunosorbent assays for detection of antibodies to Ebola and Marburg viruses using recombinant nucleoproteins. (20/581)

The full-length nucleoprotein (NP) of Ebola virus (EBO) was expressed as a His-tagged recombinant protein (His-EBO-NP) by a baculovirus system. Carboxy-terminal halves of NPs of EBO and Marburg virus (MBG) were expressed as glutathione S-transferase-tagged recombinant proteins in an Escherichia coli system. The antigenic regions on the NPs of EBO and MBG were determined by both Western blotting and enzyme-linked immunosorbent assay (ELISA) to be located on the C-terminal halves. The C-terminal 110 and 102 amino acids of the NPs of EBO and MBG, respectively, possess strong antigenicity. The full-length NP of EBO was strongly expressed in insect cells upon infection with the recombinant baculovirus, while expression of the full-length NP of MBG was weak. We developed an immunoglobulin G (IgG) ELISA using His-EBO-NP and the C-terminal halves of the NPs of EBO and MBG as antigens. We evaluated the IgG ELISA for the ability to detect IgG antibodies to EBO and MBG, using human sera collected from EBO and MBG patients. The IgG ELISA with the recombinant NPs showed high sensitivity and specificity in detecting EBO and MBG antibodies. The results indicate that ELISA systems prepared with the recombinant NPs of EBO and MBG are valuable tools for the diagnosis of EBO and MBG infections and for seroepidemiological field studies.  (+info)

Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. (21/581)

Using the vesicular stomatitis virus (VSV) pseudotype system, we studied the functional properties of the Ebola virus glycoprotein (GP). Amino acid substitutions at the GP cleavage site, which reduce glycoprotein cleavability and viral infectivity in some viruses, did not appreciably change the infectivity of VSV pseudotyped with GP. Likewise, removal of two acylated cysteine residues in the transmembrane region of GP showed no discernible effects on infectivity. Although most filoviruses are believed to target endothelial cells and hepatocytes preferentially, the GP-carrying VSV showed greater affinity for epithelial cells than for either of these cell types, indicating that Ebola virus GP does not necessarily have strong tropism toward endothelial cells and hepatocytes. Finally, when it was used to screen for neutralizing antibodies against Ebola virus GP, the VSV pseudotype system allowed us to detect strain-specific neutralizing activity that was inhibited by secretory GP (SGP). This finding provides evidence of shared neutralizing epitopes on GP and SGP molecules and indicates the potential of SGP to serve as a decoy for neutralizing antibodies.  (+info)

Immunofluorescence method for detection of Ebola virus immunoglobulin g, using HeLa cells which express recombinant nucleoprotein. (22/581)

A novel recombinant baculovirus which expresses Ebola virus (EBO) nucleoprotein (NP) under the control of the cytomegalovirus immediate-early promoter was constructed. HeLa cells abortively infected with the baculovirus expressed EBO NP, and this was used as an immunofluorescent (IF) antigen to detect EBO immunoglobulin G (IgG) antibody. This IF method has high efficacy in detecting EBO IgG antibody in clinical specimens, indicating its usefulness in the diagnosis of EBO infections and seroepidemiological studies.  (+info)

Infectivity-enhancing antibodies to Ebola virus glycoprotein. (23/581)

Ebola virus causes severe hemorrhagic fever in primates, resulting in mortality rates of up to 100%, yet there are no satisfactory biologic explanations for this extreme virulence. Here we show that antisera produced by DNA immunization with a plasmid encoding the surface glycoprotein (GP) of the Zaire strain of Ebola virus enhances the infectivity of vesicular stomatitis virus pseudotyped with the GP. Substantially weaker enhancement was observed with antiserum to the GP of the Reston strain, which is much less pathogenic in humans than the Ebola Zaire and Sudan viruses. The enhancing activity was abolished by heat but was increased in the presence of complement system inhibitors, suggesting that heat-labile factors other than the complement system are required for this effect. We also generated an anti-Zaire GP monoclonal antibody that enhanced viral infectivity and another that neutralized it, indicating the presence of distinct epitopes for these properties. Our findings suggest that antibody-dependent enhancement of infectivity may account for the extreme virulence of the virus. They also raise issues about the development of Ebola virus vaccines and the use of passive prophylaxis or therapy with Ebola virus GP antibodies.  (+info)

Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: a comparative analysis with fluorogenic peptides. (24/581)

Fluorogenic peptides encompassing the processing sites of envelope glycoproteins of the infectious influenza A Hong Kong virus (HKV), Ebola virus (EBOV) and respiratory syncytial virus (RSV) were tested for cleavage by soluble recombinants of the proprotein convertases furin, PC5 and PC7. Kinetic studies with these intramolecularly quenched fluorogenic peptides revealed selective cleavages at the physiological dibasic sites. The HKV peptide is cleaved by both furin and PC5 with similar efficacy; in comparison, PC7 cleaves this substrate poorly. In contrast with the basic tetrapeptide insertion within the haemagglutinin sequence of HKV, two other dipeptide insertions revealed a poorer cleavage with a similar rank order of potency. These results demonstrate that the N-terminal RERR insertion to the wild-type avian RKKR downward arrow sequence is functionally significant, and suggest that the approx. 5-fold increase in cleavage efficacy contributes to the high infectivity of the H5N1 virus subtype. With regard to RSV peptide processing, PC7 is twice as effective as PC5 and furin. The EBOV peptide was processed with similar efficiency by the three enzymes. Our observations that all of these cleavages can be effectively inhibited by a plant andrographolide derivative at 250 microM or less might aid in the design of potent convertase inhibitors as alternative antiviral therapies.  (+info)