Origins of inner ear sensory organs revealed by fate map and time-lapse analyses. (65/1036)

The inner ear develops from a simple ectodermal thickening called the otic placode into a labyrinth of chambers which house sensory organs that sense sound and are used to maintain balance. Although the morphology and function of the sensory organs are well characterized, their origins and lineage relationships are virtually unknown. In this study, we generated a fate map of Xenopus laevis inner ear at otic placode and otocyst stages to determine the developmental origins of the sensory organs. Our lineage analysis shows that all regions of the otic placode and otocyst can give rise to the sensory organs of the inner ear, though there were differences between labeled quadrants in the range of derivatives formed. A given region often gives rise to cells in multiple sensory organs, including cells that apparently dispersed from anterior to posterior poles and vice versa. These results suggest that a single sensory organ arises from cells in different parts of the placode or otocyst and that cell mixing plays a large role in ear development. Time-lapse videomicroscopy provides further evidence that cells from opposite regions of the inner ear mix during the development of the inner ear, and this mixing begins at placode stages. Lastly, bone morphogenetic protein 4 (BMP-4), a member of the transforming growth factor beta (TGF-beta) family, is expressed in all sensory organs of the frog inner ear, as it is in the developing chicken ear. Inner ear fate maps provide a context for interpreting gene expression patterns and embryological manipulations.  (+info)

Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells. (66/1036)

The epithelial components of the vertebrate inner ear and its associated ganglion arise from the otic placode. The cell types formed include neurons, hair-cell mechanoreceptors, supporting cells, secretory cells that make endolymphatic fluid or otolithic membranes, and simple epithelial cells lining the fluid-filled cavities. The epithelial sheet is surrounded by an inner layer of connective and vascular tissues and an outer capsule of bone. To explore the mechanisms of cell fate specification in the ear, retrovirus-mediated lineage analysis was performed after injecting virus into the chicken otocyst on embryonic days 2.5-5.5. Because lineage analysis might reveal developmental compartments, an effort was made to study clonal dispersion by sampling infected cells from different parts of the same ear, including the auditory ganglion, cochlea, saccule, utricle, and semicircular canals. Lineage relationships were confirmed for 75 clones by amplification and sequencing of a variable DNA tag carried by each virus. While mesenchymal clones could span different structural parts of the ear, epithelial clones did not. The circumscribed epithelial clones indicated that their progenitors were not highly migratory. Ganglion cell clones, in contrast, were more dispersed. There was no evidence for a common lineage between sensory cells and their associated neurons, a prediction based on a proposal that the ear sensory organs and fly mechanosensory organs are evolutionarily homologous. As expected, placodal derivatives were unrelated to adjacent mesenchymal cells or to nonneuronal cells of the ganglion. Within the otic capsule, fibroblasts and cartilage cells could be related by lineage.  (+info)

The Wheels mutation in the mouse causes vascular, hindbrain, and inner ear defects. (67/1036)

In a screen for mouse mutations with dominant behavioral anomalies, we identified Wheels, a mutation associated with circling and hyperactivity in heterozygotes and embryonic lethality in homozygotes. Mutant Wheels embryos die at E10.5-E11.5 and exhibit a host of morphological anomalies which include growth retardation and anomalies in vascular and hindbrain development. The latter includes perturbation of rhombomeric boundaries as detected by Krox20 and Hoxb1. PECAM-1 staining of embryos revealed normal formation of the primary vascular plexus. However, subsequent stages of branching and remodeling do not proceed normally in the yolk sac and in the embryo proper. To obtain insights into the circling behavior, we examined development of the inner ear by paint-filling of membranous labyrinths of Whl/+ embryos. This analysis revealed smaller posterior and lateral semicircular canal primordia and a delay in the canal fusion process at E12.5. By E13.5, the lateral canal was truncated and the posterior canal was small or absent altogether. Marker analysis revealed an early molecular phenotype in heterozygous embryos characterized by perturbed expression of Bmp4 and Msx1 in prospective lateral and posterior cristae at E11.5. We have constructed a genetic and radiation hybrid map of the centromeric portion of mouse Chromosome 4 across the Wheels region and refined the position of the Wheels locus to the approximately 1.1-cM region between D4Mit104 and D4Mit181. We have placed the locus encoding Epha7, in the Wheels candidate region; however, further analysis showed no mutations in the Epha7-coding region and no detectable changes in mRNA expression pattern. In summary, our findings indicate that Wheels, a gene which is essential for the survival of the embryo, may link diverse processes involved in vascular, hindbrain, and inner ear development.  (+info)

Apical P2Y4 purinergic receptor controls K+ secretion by vestibular dark cell epithelium. (68/1036)

It was previously shown that K+ secretion by vestibular dark cell epithelium is under control of G protein-coupled receptors of the P2Y family in the apical membrane that are activated by both purine and uridine nucleotides (P2Y2, P2Y4, or P2Y6). The present study was conducted to determine the subtype of purinergic receptor and to test whether these receptors undergo desensitization. The transepithelial short-circuit current represents electrogenic K+ secretion and was found to be reduced by UTP, ATP, and diadenosine tetraphosphate, but not UDP. Neither pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 30 microM) nor suramin (100 microM) inhibited the effect of UTP. The potencies of the agonists were consistent with rodent P2Y4 and P2Y2, but not P2Y6, receptors. The ineffectiveness of suramin was consistent with P2Y4, but not P2Y2. Transcripts for both P2Y2 and P2Y4 were found in vestibular labyrinth. Sustained exposure to ATP or UTP for 15 min caused a constant depression of short-circuit current with no apparent desensitization. The results support the conclusion that regulation of K+ secretion across vestibular dark cell epithelium occurs by P2Y4 receptors without desensitization of the response.  (+info)

Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. (69/1036)

The mammalian inner ear contains two sensory organs, the cochlea and vestibule. Their sensory neuroepithelia are characterized by a mosaic of hair cells and supporting cells. Cochlear hair cells differentiate in four rows: a single row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs). Recent studies have shown that Math1, a mammalian homolog of Drosophila atonal is a positive regulator of hair cell differentiation. The basic helix-loop-helix (bHLH) genes Hes1 and Hes5 (mammalian hairy and Enhancer-of-split homologs) can influence cell fate determination by acting as negative regulators to inhibit the action of bHLH-positive regulators. We show by using reverse transcription-PCR analysis that Hes1, Hes5, and Math1 are expressed in the developing mouse cochleae. In situ hybridization revealed a widespread expression of Hes1 in the greater epithelial ridge (GER) and in lesser epithelial ridge (LER) regions. Hes5 is predominantly expressed in the LER, in supporting cells, and in a narrow band of cells within the GER. Examination of cochleae from Hes1(-/-) mice showed a significant increase in the number of IHCs, whereas cochleae from Hes5(-/-) mice showed a significant increase in the number of OHCs. In the vestibular system, targeted deletion of Hes1 and to a lesser extent Hes5 lead to formation of supernumerary hair cells in the saccule and utricle. The supernumerary hair cells in the mutant mice showed an upregulation of Math1. These data indicate that Hes1 and Hes5 participate together for the control of inner ear hair cell production, likely through the negative regulation of Math1.  (+info)

Specific expression of the retinoic acid-synthesizing enzyme RALDH2 during mouse inner ear development. (70/1036)

Retinoid binding proteins and nuclear receptors are expressed in the developing mouse inner ear. Here, we report that the retinaldehyde dehydrogenase 2 (Raldh2) gene, whose product is involved in the enzymatic generation of retinoic acid (RA), exhibits a restricted expression pattern during mouse inner ear ontogenesis. The Raldh2 gene is first expressed at embryonic day (E) 10.5 in a V-shaped medio-dorsal region of the otocyst outer epithelium, which evolves as two separate domains upon otocyst morphogenesis. At E14.5, Raldh2 is expressed in two areas of the utricle epithelium and specific regions of the saccule and cochlear mesenchyme. Later, Raldh2 transcripts are restricted to two cochlear areas, the stria vascularis and Reissner membrane. Raldh2 mesenchymal expression did not correlate with migrating neural crest-derived melanoblasts. These restricted expression domains may correspond to specific sites of RA synthesis during inner ear morphogenesis.  (+info)

ACTH4-10, substance P, and dizolcipine (MK-801) accelerate functional recovery after hemilabyrinthectomy in goldfish. (71/1036)

In this study, we evaluated the goldfish model of hemilabyrinthectomy for investigating potential recovery-promoting drugs. In this lesion model, the unilateral removal of the labyrinth induces a postural imbalance in response to light (Dorsal Light Reflex), from which the animals can recover over time. The behavioral effects of two neuropeptides were tested--namely, of substance P and ACTH4-10, both of which are known to promote functional recovery in several other lesion models. Furthermore, the effect of MK-801, an antagonist of the glutamatergic NMDA-receptor subtype, was tested because this substance has also been shown to exert a neuroprotective effect. After lesion of the right labyrinth, the animals (n = 12) were treated intraperitoneally daily either with vehicle (n = 12), substance P (n = 11), ACTH4-10 (n = 12), or MK-801 (n = 12). Another group (n = 11), which served as a non-lesion control, did not receive hemilabyrinthectomy or systemic injections. The lesion group, treated post-operatively with vehicle, did not recover from the postural deviation over the 24-d testing period. In contrast, all three test substances accelerated the functional recovery after unilateral labyrinthectomy. The decrease of the dorsal light reflex persisted even after cessation of drug treatment after 20 d. The results indicate that using the dorsal light reflex in the model of hemilabyrinthectomy in goldfish provides a useful approach to studying the ability of potential new neurotrophic or neuroprotective drugs to promote functional recovery.  (+info)

Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. (72/1036)

The POU domain transcription factors Brn3a, Brn3b and Brn3c are required for the proper development of sensory ganglia, retinal ganglion cells, and inner ear hair cells, respectively. We have investigated the roles of Brn3a in neuronal differentiation and target innervation in the facial-stato-acoustic ganglion. We show that absence of Brn3a results in a substantial reduction in neuronal size, abnormal neuronal migration and downregulation of gene expression, including that of the neurotrophin receptor TrkC, parvalbumin and Brn3b. Selective loss of TrkC neurons in the spiral ganglion of Brn3a(-/-) cochlea leads to an innervation defect similar to that of TrkC(-/-) mice. Most remarkably, our results uncover a novel role for Brn3a in regulating axon pathfinding and target field innervation by spiral and vestibular ganglion neurons. Loss of Brn3a results in severe retardation in development of the axon projections to the cochlea and the posterior vertical canal as early as E13.5. In addition, efferent axons that use the afferent fibers as a scaffold during pathfinding also show severe misrouting. Interestingly, despite the well-established roles of ephrins and EphB receptors in axon pathfinding, expression of these molecules does not appear to be affected in Brn3a(-/-) mice. Thus, Brn3a must control additional downstream genes that are required for axon pathfinding.  (+info)