Activation and repression of p21(WAF1/CIP1) transcription by RB binding proteins. (1/148)

The Cdk inhibitor p21(WAF1/CIP1) is a negative regulator of the cell cycle, although its expression is induced by a number of mitogens that promote cell proliferation. We have found that E2F1 and E2F3, transcription factors that activate genes required for cell cycle progression, are strong activators of the p21 promoter. In contrast, HBP1 (HMG-box protein-1), a novel retinoblastoma protein-binding protein, can repress the p21 promoter and inhibit induction of p21 expression by E2F. Both E2Fs and HBP1 regulate p21 transcription through cis-acting elements located between nucleotides -119 to +16 of the p21 promoter and the DNA binding domains of each of these proteins are required for activity. Sequences between -119 and -60 basepairs containing four Sp1 consensus elements and two noncanonical E2F binding sites are of major importance for E2F activation, although E2F1 and E2F3 differ in the extent of their ability to activate expression when this segment is deleted. The opposing effects of E2Fs and HBP1 on p21 promoter activity suggest that interplay between these factors may determine the level of p21 transcription in vivo.  (+info)

Neural precursor cells differentiating in the absence of Rb exhibit delayed terminal mitosis and deregulated E2F 1 and 3 activity. (2/148)

The severe neurological deficit in embryos carrying null mutations for the retinoblastoma (Rb) gene suggests that Rb plays a crucial role in neurogenesis. While developing neurons undergo apoptosis in vivo neural precursor cells cultured from Rb-deficient embryos appear to differentiate and survive. To determine whether Rb is an essential regulator of the intrinsic pathway modulating terminal mitosis we examined the terminal differentiation of primary cortical progenitor cells and bFGF-dependent neural stem cells derived from Rb-deficient mice. Although Rb -/- neural precursor cells are able to differentiate in vitro we show that these cells exhibit a significant delay in terminal mitosis relative to wild-type cells. Furthermore, Rb -/- cells surviving in vitro exhibit an upregulation of p107 that is found in complexes with E2F3. This suggests that p107 may partially compensate for the loss of Rb in neural precursor cells. Functional ablation of Rb family proteins by adenovirus-mediated delivery of an E1A N-terminal mutant results in apoptosis in Rb-deficient cells, consistent with the interpretation that other Rb family proteins may facilitate differentiation and survival. While p107 is upregulated and interacts with the putative Rb target E2F3 in neural precursor cells, our results indicate that it clearly cannot restore normal E2F regulation. Rb-deficient cells exhibit a significant enhancement of E2F 1 and 3 activity throughout differentiation concomitant with the aberrant expression of E2F-inducible genes. In these studies we show that Rb is essential for the regulation of E2F 1 and 3 activity as well as the onset of terminal mitosis in neural precursor cells.  (+info)

CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. (3/148)

Functional inactivation of the pRB pathway is a very frequent event in human cancer, resulting in deregulated activity of the E2F transcription factors. To understand the functional role of the E2Fs in cell proliferation, we have developed cell lines expressing E2F-1, E2F-2, and E2F-3 fused to the estrogen receptor ligand binding domain (ER). In this study, we demonstrated that activation of all three E2Fs could relieve the mitogen requirement for entry into S phase in Rat1 fibroblasts and that E2F activity leads to a shortening of the G(0)-G(1) phase of the cell cycle by 6 to 7 h. In contrast to the current assumption that E2F-1 is the only E2F capable of inducing apoptosis, we showed that deregulated E2F-2 and E2F-3 activities also result in apoptosis. Using the ERE2F-expressing cell lines, we demonstrated that several genes containing E2F DNA binding sites are efficiently induced by the E2Fs in the absence of protein synthesis. Furthermore, CDC25A is defined as a novel E2F target whose expression can be directly regulated by E2F-1. Data showing that CDC25A is an essential target for E2F-1, since its activity is required for efficient induction of S phase by E2F-1, are provided. Finally, our results show that expression of two E2F target genes, namely CDC25A and cyclin E, is sufficient to induce entry into S phase in quiescent fibroblasts. Taken together, our results provide an important step in defining how E2F activity leads to deregulated proliferation.  (+info)

Regulation of the G1/S transition phase in mesangial cells by E2F1. (4/148)

It has been established that E2F transcription factors are essential for the regulation of the cell cycle. The E2Fs play an important role in G1/S transition phase, as they regulate the activation of several genes whose products are required for DNA synthesis. E2Fs bind to the retinoblastoma protein family and their transcriptional activities are suppressed in the G0 and early G1 phases. The E2F family consists of a group of five closely related proteins (E2F1 through E2F5). Proliferation of the mesangial cell is a common feature of many glomerular diseases, but the regulation of mesangial cell cycle has not been clarified, nor has the participation of the E2F family in mesangial cells. To elucidate the mechanisms of G1/S transition phase in mesangial cells, we investigated the roles of the E2F family in the mesangial cell cycle. In primary cultured mesangial cells, the protein expression of E2F1 through E2F3 was induced by fetal calf serum (FCS) stimulation. E2F1 especially was strongly induced by mitogenic stimulation. The E2F4 protein was abundantly expressed in the quiescent state and was slightly increased by FCS stimulation. We considered E2F1 to be representative of the E2F family, and used adenovirus-mediated gene transfer to investigate the function of E2F1 to show that overexpression of E2F1 promoted cell cycle progression as measured by a flow cytometer. Furthermore, we investigated the effect of E2F1 overexpression to cyclin D1 and cyclin E expression. Because we previously reported that the regulation of G1 cyclins is a key factor in the G1/S transition phase in mesangial cells, we showed that overexpression of E2F1 induced protein expression of cyclin D1 and cyclin E and increased promoter activity. Thus, we conclude that E2F1 plays an important role in the G1/S transition phase and acts on the mesangial cell cycle through two distinct pathways: (1) E2F1 directly transcribes an S-phase gene, and (2) E2F1 promotes cell cycle progression via the induction of cyclin D1 and cyclin E.  (+info)

Subcellular compartmentalization of E2F family members is required for maintenance of the postmitotic state in terminally differentiated muscle. (5/148)

Maintenance of cells in a quiescent state after terminal differentiation occurs through a number of mechanisms that regulate the activity of the E2F family of transcription factors. We report here that changes in the subcellular compartmentalization of the E2F family proteins are required to prevent nuclei in terminally differentiated skeletal muscle from reentering S phase. In terminally differentiated L6 myotubes, E2F-1, E2F-3, and E2F-5 were primarily cytoplasmic, E2F-2 was nuclear, whereas E2F-4 became partitioned between both compartments. In these same cells, pRB family members, pRB, p107, and p130 were also nuclear. This compartmentalization of the E2F-1 and E2F-4 in differentiated muscle cells grown in vitro reflected their observed subcellular location in situ. We determined further that exogenous E2F-1 or E2F-4 expressed in myotubes at levels fourfold greater than endogenous proteins compartmentalized identically to their endogenous counterparts. Only when overexpressed at higher levels was inappropriate subcellular location for these proteins observed. At these levels, induction of the E2F-regulated genes, cyclins A and E, and suppression of factors associated with myogenesis, myogenin, and p21(Cip1) was observed. Only at these levels of E2F expression did nuclei in these terminally differentiated cells enter S phase. These data demonstrate that regulation of the subcellular compartmentalization of E2F-family members is required to maintain nuclei in a quiescent state in terminally differentiated cells.  (+info)

Deregulated E2F transcriptional activity in autonomously growing melanoma cells. (6/148)

Inactivation of the retinoblastoma tumor suppressor protein (pRb) has been implicated in melanoma cells, but the molecular basis for this phenotype has not yet been elucidated, and the status of additional family members (p107 and p130, together termed pocket proteins) or the consequences on downstream targets such as E2F transcription factors are not known. Because cell cycle progression is dependent on the transcriptional activity of E2F family members (E2F1-E2F6), most of them regulated by suppressive association with pocket proteins, we characterized E2F-pocket protein DNA binding activity in normal versus malignant human melanocytes. By gel shift analysis, we show that in mitogen-dependent normal melanocytes, external growth factors tightly controlled the levels of growth-promoting free E2F DNA binding activity, composed largely of E2F2 and E2F4, and the growth-suppressive E2F4-p130 complexes. In contrast, in melanoma cells, free E2F DNA binding activity (E2F2 and E2F4, to a lesser extent E2F1, E2F3, and occasionally E2F5), was constitutively maintained at high levels independently of external melanocyte mitogens. E2F1 was the only family member more abundant in the melanoma cells compared with normal melanocytes, and the approximately fivefold increase in DNA binding activity could be accounted for mostly by a similar increase in the levels of the dimerization partner DP1. The continuous high expression of cyclin D1, A2, and E, the persistent cyclin-dependent kinase 4 (CDK4) and CDK2 activities, and the presence of hyperphosphorylated forms of pRb, p107, and p130, suggest that melanoma cells acquired the capacity for autonomous growth through inactivation of all three pocket proteins and release of E2F activity, otherwise tightly regulated in normal melanocytes by external growth factors.  (+info)

E2f3 is critical for normal cellular proliferation. (7/148)

E2F is a family of transcription factors that regulate both cellular proliferation and differentiation. To establish the role of E2F3 in vivo, we generated an E2f3 mutant mouse strain. E2F3-deficient mice arise at one-quarter of the expected frequency, demonstrating that E2F3 is important for normal development. To determine the molecular consequences of E2F3 deficiency, we analyzed the properties of embryonic fibroblasts derived from E2f3 mutant mice. Mutation of E2f3 dramatically impairs the mitogen-induced, transcriptional activation of numerous E2F-responsive genes. We have been able to identify a number of genes, including B-myb, cyclin A, cdc2, cdc6, and DHFR, whose expression is dependent on the presence of E2F3 but not E2F1. We further show that a critical threshold level of one or more of the E2F3-regulated genes determines the timing of the G(1)/S transition, the rate of DNA synthesis, and thereby the rate of cellular proliferation. Finally, we show that E2F3 is not required for cellular immortalization but is rate limiting for the proliferation of the resulting tumor cell lines. We conclude that E2F3 is critical for the transcriptional activation of genes that control the rate of proliferation of both primary and tumor cells.  (+info)

Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. (8/148)

The E2F transcription factor plays a pivotal role in the timely activation of gene expression during mammalian cell cycle progression, whereas pRB and related proteins control cell growth in part through the ability to block the action of E2F. To identify physiologically important E2F-responsive promoters and to study their occupancy and histone acetylation state in vivo, we have taken advantage of a cross-linking approach in synchronized, living cells. We find that the pattern of E2F and pRB-related polypeptides recruited to these promoters changes in a strikingly dynamic fashion as cells progress from quiescence into G(1) and S phase: Repression of each promoter in quiescent cells is associated with recruitment of E2F-4 and p130 and low levels of histone acetylation, but by late G(1), these proteins are replaced largely by E2F-1 and E2F-3, in concert with acetylation of histones H3 and H4 and gene activation. These findings suggest that repression and activation of E2F-responsive genes may occur through distinct E2F heterodimers that direct the sequential recruitment of enzymes able to deacetylate and then acetylate core histones.  (+info)