Loading...
(1/137) Activation and repression of p21(WAF1/CIP1) transcription by RB binding proteins.

The Cdk inhibitor p21(WAF1/CIP1) is a negative regulator of the cell cycle, although its expression is induced by a number of mitogens that promote cell proliferation. We have found that E2F1 and E2F3, transcription factors that activate genes required for cell cycle progression, are strong activators of the p21 promoter. In contrast, HBP1 (HMG-box protein-1), a novel retinoblastoma protein-binding protein, can repress the p21 promoter and inhibit induction of p21 expression by E2F. Both E2Fs and HBP1 regulate p21 transcription through cis-acting elements located between nucleotides -119 to +16 of the p21 promoter and the DNA binding domains of each of these proteins are required for activity. Sequences between -119 and -60 basepairs containing four Sp1 consensus elements and two noncanonical E2F binding sites are of major importance for E2F activation, although E2F1 and E2F3 differ in the extent of their ability to activate expression when this segment is deleted. The opposing effects of E2Fs and HBP1 on p21 promoter activity suggest that interplay between these factors may determine the level of p21 transcription in vivo.  (+info)

(2/137) Ras enhances Myc protein stability.

Various experiments have demonstrated a collaborative action of Myc and Ras, both in normal cell growth control as well as during oncogenesis. We now show that Ras enhances the accumulation of Myc activity by stabilizing the Myc protein. Whereas Myc has a very short half-life when produced in the absence of mitogenic signals, due to degradation by the 26S proteasome, the half-life of Myc increases markedly in growth-stimulated cells. This stabilization is dependent on the Ras/Raf/MAPK pathway and is not augmented by proteasome inhibition, suggesting that Ras inhibits the proteasome-dependent degradation of Myc. We propose that one aspect of Myc-Ras collaboration is an ability of Ras to enhance the accumulation of transcriptionally active Myc protein.  (+info)

(3/137) CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase.

Functional inactivation of the pRB pathway is a very frequent event in human cancer, resulting in deregulated activity of the E2F transcription factors. To understand the functional role of the E2Fs in cell proliferation, we have developed cell lines expressing E2F-1, E2F-2, and E2F-3 fused to the estrogen receptor ligand binding domain (ER). In this study, we demonstrated that activation of all three E2Fs could relieve the mitogen requirement for entry into S phase in Rat1 fibroblasts and that E2F activity leads to a shortening of the G(0)-G(1) phase of the cell cycle by 6 to 7 h. In contrast to the current assumption that E2F-1 is the only E2F capable of inducing apoptosis, we showed that deregulated E2F-2 and E2F-3 activities also result in apoptosis. Using the ERE2F-expressing cell lines, we demonstrated that several genes containing E2F DNA binding sites are efficiently induced by the E2Fs in the absence of protein synthesis. Furthermore, CDC25A is defined as a novel E2F target whose expression can be directly regulated by E2F-1. Data showing that CDC25A is an essential target for E2F-1, since its activity is required for efficient induction of S phase by E2F-1, are provided. Finally, our results show that expression of two E2F target genes, namely CDC25A and cyclin E, is sufficient to induce entry into S phase in quiescent fibroblasts. Taken together, our results provide an important step in defining how E2F activity leads to deregulated proliferation.  (+info)

(4/137) Subcellular compartmentalization of E2F family members is required for maintenance of the postmitotic state in terminally differentiated muscle.

Maintenance of cells in a quiescent state after terminal differentiation occurs through a number of mechanisms that regulate the activity of the E2F family of transcription factors. We report here that changes in the subcellular compartmentalization of the E2F family proteins are required to prevent nuclei in terminally differentiated skeletal muscle from reentering S phase. In terminally differentiated L6 myotubes, E2F-1, E2F-3, and E2F-5 were primarily cytoplasmic, E2F-2 was nuclear, whereas E2F-4 became partitioned between both compartments. In these same cells, pRB family members, pRB, p107, and p130 were also nuclear. This compartmentalization of the E2F-1 and E2F-4 in differentiated muscle cells grown in vitro reflected their observed subcellular location in situ. We determined further that exogenous E2F-1 or E2F-4 expressed in myotubes at levels fourfold greater than endogenous proteins compartmentalized identically to their endogenous counterparts. Only when overexpressed at higher levels was inappropriate subcellular location for these proteins observed. At these levels, induction of the E2F-regulated genes, cyclins A and E, and suppression of factors associated with myogenesis, myogenin, and p21(Cip1) was observed. Only at these levels of E2F expression did nuclei in these terminally differentiated cells enter S phase. These data demonstrate that regulation of the subcellular compartmentalization of E2F-family members is required to maintain nuclei in a quiescent state in terminally differentiated cells.  (+info)

(5/137) Deregulated E2F transcriptional activity in autonomously growing melanoma cells.

Inactivation of the retinoblastoma tumor suppressor protein (pRb) has been implicated in melanoma cells, but the molecular basis for this phenotype has not yet been elucidated, and the status of additional family members (p107 and p130, together termed pocket proteins) or the consequences on downstream targets such as E2F transcription factors are not known. Because cell cycle progression is dependent on the transcriptional activity of E2F family members (E2F1-E2F6), most of them regulated by suppressive association with pocket proteins, we characterized E2F-pocket protein DNA binding activity in normal versus malignant human melanocytes. By gel shift analysis, we show that in mitogen-dependent normal melanocytes, external growth factors tightly controlled the levels of growth-promoting free E2F DNA binding activity, composed largely of E2F2 and E2F4, and the growth-suppressive E2F4-p130 complexes. In contrast, in melanoma cells, free E2F DNA binding activity (E2F2 and E2F4, to a lesser extent E2F1, E2F3, and occasionally E2F5), was constitutively maintained at high levels independently of external melanocyte mitogens. E2F1 was the only family member more abundant in the melanoma cells compared with normal melanocytes, and the approximately fivefold increase in DNA binding activity could be accounted for mostly by a similar increase in the levels of the dimerization partner DP1. The continuous high expression of cyclin D1, A2, and E, the persistent cyclin-dependent kinase 4 (CDK4) and CDK2 activities, and the presence of hyperphosphorylated forms of pRb, p107, and p130, suggest that melanoma cells acquired the capacity for autonomous growth through inactivation of all three pocket proteins and release of E2F activity, otherwise tightly regulated in normal melanocytes by external growth factors.  (+info)

(6/137) Expression of the E2F family of transcription factors during murine development.

The E2F family of transcription factors plays a crucial role in the control of cell cycle progression and regulation of cellular proliferation, both processes fundamental to mammalian development. In the present study, we have examined the levels of expression of the six currently identified E2F proteins in murine embryos/fetuses as a function of gestational age, compared the expression of these six proteins in selected developing and adult tissues, and examined E2F expression in the embryonic murine palate, a tissue in which perturbation of proliferation is associated with induction of cleft palate. Our results indicate that: 1) multiple forms of individual E2F family members are present in embryonic, fetal and adult cells/tissues; 2) each of the six E2Fs is expressed in a tissue specific manner in both adult and embryonic/fetal organs; 3) certain forms of individual E2F family members are preferentially detected in adult tissues, whereas others are preferentially expressed in embryonic/fetal tissues; 4) expression of the various E2Fs and their isoforms follows distinct temporal patterns during murine gestation; and 5) individual E2F family members also exhibit differential patterns of temporal expression during murine palatogenesis.  (+info)

(7/137) A genetic screen to identify genes that rescue the slow growth phenotype of c-myc null fibroblasts.

The c-myc gene is frequently over-expressed in human cancers and is involved in regulation of proliferation, differentiation and apoptosis. c-Myc is a transcription factor that acts primarily by regulating the expression of other genes. However, it has been very difficult to identify bona fide c-Myc target genes that explain its diverse biological activities. The recent generation of c-myc deficient Rat1A fibroblasts with a profound and stable growth defect provides a new system to search for genes that can substitute for c-myc in proliferation. In this study, we have attempted to identify genes that rescue the slow growth phenotype of c-myc null cells through introduction of a series of potent cell cycle regulatory genes and several retroviral cDNA expression libraries. None of the candidate genes tested, including SV40 T-antigen and adenovirus E1A, caused reversal of the c-myc null growth defect. Furthermore, extensive screens with high-complexity retroviral cDNA libraries from three different tissue sources revealed that only c-myc and N-myc rescued the c-myc null slow-growth phenotype. Our data support the notion that there are no functional equivalents of the myc family of proto-oncogenes and also suggest that there are no c-Myc-activated genes that alone can substitute for c-Myc in control of cell proliferation.  (+info)

(8/137) E2F proteins are posttranslationally modified concomitantly with a reduction in nuclear binding activity in cells infected with herpes simplex virus 1.

The transition from G(1) to S phase in the cell cycle requires sequential activation of cyclin-dependent kinase 4 (cdk4) and cdk2, which phosphorylate the retinoblastoma protein, causing the release of E2F. Free E2F upregulates the transcription of genes involved in S phase and cell cycle progression. Recent studies from this and other laboratories have shown that herpes simplex virus 1 stabilizes cyclin D3 early in infection and that early events in viral replication are sensitive to inhibitors of some cdks. On the other hand cdk2 is not activated. Here we report studies on the status of members of E2F family in cycling HEp-2 and HeLa cells and quiescent serum-starved, contact-inhibited human lung fibroblasts. The results show that (i) at 8 h postinfection or thereafter, E2F-1 and E2F-5 were posttranslationally modified and/or translocated from nucleus to the cytoplasm, (ii) E2F-4 was hyperphophorylated, and (iii) overall, E2F binding to cognate DNA sites was decreased at late times after infection. These results concurrent with those cited above indicate that late in infection activation of S-phase genes is blocked both by posttranslational modification and translocation of members of E2F family to inactive compartments and by the absence of active cdk2. The observation that E2F were also posttranslationally modified in quiescent human lung fibroblasts that were not in S phase at the time of infection suggests that specific viral gene products are responsible for modification of the members of E2F family and raises the possibility that in infected cells, activation of the S phase gene is an early event in viral infection and is then shut off at late times. This is consistent with the timing of stabilization of cyclin D3 and the events blocked by inhibitors of cdks.  (+info)