Dystonia and the nuclear envelope. (17/87)

Mutations in torsinA cause dominantly inherited early-onset torsion dystonia in humans. In this issue of Neuron, Goodchild et al. show that torsinA knockout and knockin mice have similar phenotypes, which suggests that the mutant torsinA allele causes disease because it has decreased function. The experiments also highlight the possible role of nuclear envelope dynamics in maintaining normal neuronal function.  (+info)

Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. (18/87)

An enigmatic feature of many genetic diseases is that mutations in widely expressed genes cause tissue-specific illness. One example is DYT1 dystonia, a neurodevelopmental disease caused by an in-frame deletion (Deltagag) in the gene encoding torsinA. Here we show that neurons from both torsinA null (Tor1a(-/-)) and homozygous disease mutant "knockin" mice (Tor1a(Deltagag/Deltagag)) contain severely abnormal nuclear membranes, although non-neuronal cell types appear normal. These membrane abnormalities develop in postmigratory embryonic neurons and subsequently worsen with further neuronal maturation, a finding evocative of the developmental dependence of DYT1 dystonia. These observations demonstrate that neurons have a unique requirement for nuclear envelope localized torsinA function and suggest that loss of this activity is a key molecular event in the pathogenesis of DYT1 dystonia.  (+info)

Clinical and genetic features of DYT1 and DYT5. (19/87)

Dystonia is a syndrome which is characterized by sustained muscle contractions, producing twisting, repetitive, and patterned movements, or abnormal postures. According to genetic basis, dystonia is classified into 13 subtypes. We mainly discussed two subtypes, DYT1 and DYT5, in this review. Early-onset primary dystonia is caused by the mutation of DYT1 gene, which leads to TORSINA abnormal. GTP cyclohydrolase 1 (GTPCH1)-deficient DRD (DYT5) is caused by the mutations of GCH1 gene. By genetic testing, we can confirm clinical diagnosis of each subtype and develop prenatal diagnosis for it.  (+info)

Caesarean section in a patient with torsion dystonia. (20/87)

We present a case of torsion dystonia in a 35-yr-old primigravida who presented for a Caesarean section under general anaesthesia. She had limb contractures and severe kyphoscoliosis associated with limited respiratory reserve and function. General anaesthesia was induced using thiopental and divided doses of mivacurium for rapid sequence induction. After the delivery of a healthy male baby, she received i.v. morphine and bilateral iliohypogastric, ilioinguinal blocks and had an uneventful recovery. Technical issues of supine positioning, intubation and respiratory support need to be considered during anaesthesia planning. Although regional anaesthesia is commonly offered for caesarean section, maternal compromise and technical factors may preclude this approach.  (+info)

Defective temporal processing of sensory stimuli in DYT1 mutation carriers: a new endophenotype of dystonia? (21/87)

DYT1 primary torsion dystonia is an autosomal dominant movement disorder due to a 3-bp GAG deletion in the TOR1A gene, which becomes manifest in only 30-40% of mutation carriers. Investigating the factors regulating this reduced penetrance might add new insight into the mechanisms underlying the disease. The pathophysiology of dystonia has been related to basal ganglia dysfunctions that lead to the most prominent motor symptoms. However, subclinical sensory deficits have also been reported, particularly in adult-onset focal dystonia. Sensory abnormalities in different forms of sporadic dystonia have been revealed by using a psychophysical method, namely, the temporal discrimination threshold (TDT), quantified as the shortest time interval at which the two stimuli are perceived as separate. Little or no information about the presence of sensory abnormalities in DYT1 gene manifesting and non-manifesting carriers is available. With the aim of disclosing possible associations between sensory deficits and the DYT1 mutation, we assessed TDTs of DYT1 manifesting patients (n = 9); DYT1 non-manifesting relatives (n = 11); non-carrier relatives (n = 9); external control subjects (n = 11). Pairs of tactile, visual or visuo-tactile stimuli were delivered in blocked, counterbalanced order. Intervals between stimuli increased from 0 to 400 ms (in 10 ms steps). On each trial, subjects had to report whether stimuli occurred simultaneously or asynchronously. We measured the first out of three consecutive inter-stimulus intervals at which subjects recognized the two stimuli as temporally separated (TDT) and the first of three consecutive intervals at which they also reported correctly which stimulus in the pair preceded (or followed) the other temporal order judgment (TOJ). Results showed higher tactile and visuo-tactile TDTs and TOJs in DYT1 carriers, both manifesting and non-manifesting, compared with non-carrier relatives and with external control subjects (for all comparisons, P < 0.039). This finding indicates that the DYT1 mutation determines subclinical sensory alterations, which could be disclosed by a psychophysical task. Moreover, these results have the notable implication that sensory deficits in dystonia are not a mere consequence of abnormal movements, but they may even occur before overt clinical manifestations, representing a subclinical phenotype in DYT1 mutation carriers.  (+info)

Early onset torsion dystonia (Oppenheim's dystonia). (22/87)

Early onset torsion dystonia (EOTD) is a rare movement disorder characterized by involuntary, repetitive, sustained muscle contractions or postures involving one or more sites of the body. A US study estimated the prevalence at approximately 1 in 30,000. The estimated prevalence in the general population of Europe seems to be lower, ranging from 1 in 330,000 to 1 in 200,000, although precise numbers are currently not available. The estimated prevalence in the Ashkenazi Jewish population is approximately five to ten times higher, due to a founder mutation. Symptoms of EOTD typically develop first in an arm or leg in middle to late childhood and progress in approximately 30% of patients to other body regions (generalized dystonia) within about five years. Distribution and severity of symptoms vary widely between affected individuals. The majority of cases from various ethnic groups are caused by an autosomal dominantly inherited deletion of 3 bp (GAG) in the DYT1 gene on chromosome 9q34. This gene encodes a protein named torsinA, which is presumed to act as a chaperone protein associated with the endoplasmic reticulum and the nuclear envelope. It may interact with the dopamine transporter and participate in intracellular trafficking, although its precise function within the cell remains to be determined. Molecular genetic diagnostic and genetic counseling is recommended for individuals with age of onset below 26 years, and may also be considered in those with onset after 26 years having a relative with typical early onset dystonia. Treatment options include botulinum toxin injections for focal symptoms, pharmacological therapy such as anticholinergics (most commonly trihexiphenydil) for generalized dystonia and surgical approaches such as deep brain stimulation of the internal globus pallidus or intrathecal baclofen application in severe cases. All patients have normal cognitive function, and despite a high rate of generalization of dystonia, 75% of those patients are able to maintain ambulation and independence, and therefore a comparatively good quality of life, with modern treatment modalities.  (+info)

Intragenic Cis and Trans modification of genetic susceptibility in DYT1 torsion dystonia. (23/87)

A GAG deletion in the DYT1 gene is a major cause of early-onset dystonia, but clinical disease expression occurs in only 30% of mutation carriers. To gain insight into genetic factors that may influence penetrance, we evaluated three DYT1 single-nucleotide polymorphisms, including D216H, a coding-sequence variation that moderates the effects of the DYT1 GAG deletion in cellular models. We tested DYT1 GAG-deletion carriers with (n=119) and without (n=113) clinical signs of dystonia and control individuals (n=197) and found the frequency of the 216H allele to be increased in GAG-deletion carriers without dystonia and to be decreased in carriers with dystonia, compared with the control individuals. Analysis of haplotypes demonstrated a highly protective effect of the H allele in trans with the GAG deletion; there was also suggestive evidence that the D216 allele in cis is required for the disease to be penetrant. Our findings establish, for the first time, a clinically relevant gene modifier of DYT1.  (+info)

The dystonia-associated protein torsinA modulates synaptic vesicle recycling. (24/87)

 (+info)