Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. (65/212)

IL-8 (or CXCL8) activates the receptors CXCR1 (IL-8RA) and CXCR2 (IL-8RB) to induce chemotaxis in leukocytes, but only CXCR1 mediates cytotoxic and cross-regulatory signals. This may be due to the rapid internalization of CXCR2. To investigate the roles of the intracellular domains in receptor regulation, wild-type, chimeric, phosphorylation-deficient, and cytoplasmic tail (C-tail) deletion mutants of both receptors were expressed in RBL-2H3 cells and studied for cellular activation, receptor phosphorylation, desensitization, and internalization. All but one chimeric receptor bound IL-8 and mediated signal transduction, chemotaxis, and exocytosis. Upon IL-8 activation, the chimeric receptors underwent receptor phosphorylation and desensitization. One was resistant to internalization, yet it mediated normal levels of beta-arrestin 2 (beta arr-2) translocation. The lack of internalization by this receptor may be due to its reduced association with beta arr-2 and the adaptor protein-2 beta. The C-tail-deleted and phosphorylation-deficient receptors were resistant to receptor phosphorylation, desensitization, arrestin translocation, and internalization. They also mediated greater phosphoinositide hydrolysis and exocytosis and sustained Ca(2+) mobilization, but diminished chemotaxis. These data indicate that phosphorylation of the C-tails of CXCR1 and CXCR2 are required for arrestin translocation and internalization, but are not sufficient to explain the rapid internalization of CXCR2 relative to CXCR1. The data also show that receptor internalization is not required for chemotaxis. The lack of receptor phosphorylation was correlated with greater signal transduction but diminished chemotaxis, indicating that second messenger production, not receptor internalization, negatively regulates chemotaxis.  (+info)

Dynamin 3 is a component of the postsynapse, where it interacts with mGluR5 and Homer. (66/212)

The dynamins comprise a large family of mechanoenzymes known to participate in membrane modeling events. All three conventional dynamin genes (Dyn1, Dyn2, Dyn3) are expressed in mammalian brain and produce more than 27 different dynamin proteins as a result of alternative splicing. Past studies have suggested that Dyn1 participates in specialized neuronal functions such as rapid synaptic vesicle recycling, while Dyn2 may mediate the conventional clathrin-mediated uptake of surface receptors. Currently, the distribution, expression, and function of Dyn3 in neurons, or in any other cell type, are completely undefined. Here, we demonstrate that Dyn1 and Dyn3 localize differentially in the synapse. Dyn1 concentrates within the presynaptic compartment, while Dyn3 localizes to dendritic spine tips. Within the postsynaptic density (PSD), we found Dyn3, but not Dyn1, to be part of a biochemically isolated complex comprised of Homer and metabotropic glutamate receptors. Finally, although dominant-negative Dyn3 did not seem to inhibit receptor endocytosis, overexpression of a specific Dyn3 spliced variant in mature neurons caused a marked remodeling of dendritic spines. These data suggest that Dyn3 is a postsynaptic dynamin and, like its binding partner Homer, plays a significant role in dendritic spine morphogenesis and remodeling.  (+info)

Syntaphilin binds to dynamin-1 and inhibits dynamin-dependent endocytosis. (67/212)

Syntaphilin is a brain-specific syntaxin-binding partner first characterized as an inhibitor of SNARE complex formation and neurotransmitter release. Here we show that syntaphilin also binds to dynamin-1 and through this interaction inhibits dynamin-mediated endocytosis. Immunoprecipitation studies from cross-linked rat synaptosomes demonstrate that an endogenous syntaphilin-dynamin-1 complex exists independently of dynamin-1 binding to amphiphysin. Functionally, syntaphilin expression inhibits transferrin internalization in COS-7 cells. These data reveal that syntaphilin is an inhibitor of both SNARE-based fusion and dynamin-mediated endocytosis.  (+info)

Analysis of dynamin isoforms in mammalian brain: dynamin-1 expression is spatially and temporally regulated during postnatal development. (68/212)

In adult rat brain, the microtubule-associated protein dynamin is composed of a closely spaced polypeptide doublet of approximately 100 kDa. Using an antibody preparation that is monospecific for dynamin-1 (the higher molecular mass isoform) we examined the temporal and regional expression of dynamin-1 in developing rat brain. Analysis of whole rat brain homogenates established that prior to postnatal day 9, dynamin-1 was present only at very low levels and thereafter its expression steadily increased with adult levels being attained by postnatal day 23. In individual regions of the brain, dynamin-1 levels were highest in cortex, amygdala, and striatum, significantly lower in olfactory bulb, cerebellum, and midbrain, and lowest in brainstem. During postnatal development, each of the regions exhibited approximately the same time course of protein expression except for a slight lag in expression in olfactory bulb. The spatial and temporal patterns of expression of dynamin-1 correlate with the establishment and/or maintenance of mature neuronal structure and function rather than dendritic or axonal outgrowth.  (+info)

Inhibition of receptor-mediated endocytosis demonstrates generation of amyloid beta-protein at the cell surface. (69/212)

Sequential cleavages of the amyloid beta-protein precursor (APP) by the beta- and gamma-secretases generate the amyloid beta-protein (A beta), which plays a central role in Alzheimer's disease. Previous work provided evidence for involvement of both the secretory and endocytic pathways in A beta generation. Here, we used HeLa cells stably expressing a tetracycline-regulated dominant-negative dynamin I (dyn K44A), which selectively inhibits receptor-mediated endocytosis, and analyzed the effects on the processing of endogenous APP. Upon induction of dyn K44A, levels of mature APP rose at the cell surface, consistent with retention of APP on the plasma membrane. The alpha-secretase cleavage products of APP were increased by dyn K44A, in that alpha-APPs in medium and the C83 C-terminal stub in the membrane both rose. The beta-secretase cleavage of APP, C99, also increased modestly. The use of specific gamma-secretase inhibitors to study the accumulation of alpha- and beta-cleavage products independent of their processing by gamma-secretase confirmed that retention of APP on the plasma membrane results in increased processing by both alpha- and beta-secretases. Unexpectedly, endogenous A beta secretion was significantly increased by dyn K44A, as detected by three distinct methods: metabolic labeling, immunoprecipitation/Western blotting, and enzyme-linked immunosorbent assay. Levels of p3 (generated by sequential alpha- and gamma-cleavage) also rose. We conclude that endogenous A beta can be produced directly at the plasma membrane and that alterations in the degree of APP endocytosis may help regulate its production. Our findings are consistent with a role for the gamma-secretase complex in the processing of numerous single-transmembrane receptors at the cell surface.  (+info)

Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. (70/212)

It has been thought that clathrin-mediated endocytosis is regulated by phosphorylation and dephosphorylation of many endocytic proteins, including amphiphysin I and dynamin I. Here, we show that Cdk5/p35-dependent cophosphorylation of amphiphysin I and dynamin I plays a critical role in such processes. Cdk5 inhibitors enhanced the electric stimulation-induced endocytosis in hippocampal neurons, and the endocytosis was also enhanced in the neurons of p35-deficient mice. Cdk5 phosphorylated the proline-rich domain of both amphiphysin I and dynamin I in vitro and in vivo. Cdk5-dependent phosphorylation of amphiphysin I inhibited the association with beta-adaptin. Furthermore, the phosphorylation of dynamin I blocked its binding to amphiphysin I. The phosphorylation of each protein reduced the copolymerization into a ring formation in a cell-free system. Moreover, the phosphorylation of both proteins completely disrupted the copolymerization into a ring formation. Finally, phosphorylation of both proteins was undetectable in p35-deficient mice.  (+info)

Improved detection of hydrophilic phosphopeptides using graphite powder microcolumns and mass spectrometry: evidence for in vivo doubly phosphorylated dynamin I and dynamin III. (71/212)

A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides, or peptides altered in hydrophilicity such as phosphopeptides. We used microcolumns to compare the ability of RP resin or graphite powder to retain phosphopeptides. A number of standard phosphopeptides and a biologically relevant phosphoprotein, dynamin I, were analyzed. MS revealed that some phosphopeptides did not bind the RP resin but were retained efficiently on the graphite. Those that did bind the RP resin often produced much stronger signals from the graphite powder. In particular, the method revealed a doubly phosphorylated peptide in a tryptic digest of dynamin I purified from rat brain nerve terminals. The detection of this peptide was greatly enhanced by graphite micropurification. Sequencing by tandem MS confirmed the presence of phosphate at both Ser-774 and Ser-778, while a singly phosphorylated peptide was predominantly phosphorylated only on Ser-774. The method further revealed a singly and doubly phosphorylated peptide in dynamin III, analogous to the dynamin I sequence. A pair of dynamin III phosphorylation sites were found at Ser-759 and Ser-763 by tandem MS. The results directly define the in vivo phosphorylation sites in dynamins I and III for the first time. The findings indicate a large improvement in the detection of small amounts of phosphopeptides by MS and the approach has major implications for both small- and large-scale projects in phosphoproteomics.  (+info)

Dynamin interacts with members of the sumoylation machinery. (72/212)

Dynamin is a GTP-binding protein whose oligomerization-dependent assembly around the necks of lipid vesicles mediates their scission from parent membranes. Dynamin is thus directly involved in the regulation of endocytosis. Sumoylation is a post-translational protein modification whereby the ubiquitin-like modifier Sumo is covalently attached to lysine residues on target proteins by a process requiring the concerted action of an activating enzyme (ubiquitin-activating enzyme), a conjugating enzyme (ubiquitin carrier protein), and a ligating enzyme (ubiquitin-protein isopeptide ligase). Here, we show that dynamin interacts with Sumo-1, Ubc9, and PIAS-1, all of which are members of the sumoylation machinery. Ubc9 and PIAS-1 are known ubiquitin carrier protein and ubiquitin-protein isopeptide ligase enzymes, respectively, for the process of sumoylation. We have identified the coiled-coil GTPase effector domain (GED) of dynamin as the site on dynamin that interacts with Sumo-1, Ubc9, and PIAS-1. Although we saw no evidence of covalent Sumo-1 attachment to dynamin, Sumo-1 and Ubc9 are shown here to inhibit the lipid-dependent oligomerization of dynamin. Expression of Sumo-1 and Ubc9 in mammalian cells down-regulated the dynamin-mediated endocytosis of transferrin, whereas dynamin-independent fluid-phase uptake was not affected. Furthermore, using high resolution NMR spectroscopy, we have identified amino acid residues on Sumo-1 that directly interact with the GED of dynamin. The results suggest that the GED of dynamin may serve as a scaffold that concentrates the sumoylation machinery in the vicinity of potential acceptor proteins.  (+info)