The primary structure of the duck alpha D-globin gene: an unusual 5' splice junction sequence. (57/1326)

The complete nucleotide sequence of the duck minor alpha D-globin gene including the flanking regions has been determined. A unique structural feature of the alpha D-globin gene is a GC instead of the invariant GT dinucleotide at the 5' end of the second intervening sequence. The 1013 base pair long gene has otherwise all the characteristics normally attributed to a functional globin gene. Indirect evidence suggests that the alpha D-globin gene is expressed in vivo.  (+info)

Increase in the adenine nucleotide translocase content of duckling subsarcolemmal mitochondria during cold acclimation. (58/1326)

Intermyofibrillar and subsarcolemmal mitochondria were isolated from duckling gastrocnemius muscle. The adenine nucleotide translocase (ANT) content of subsarcolemmal mitochondria was found to be half of that present in intermyofibrillar mitochondria. In addition, cold acclimation resulted in a 1.7-fold increase in subsarcolemmal mitochondrial ANT content, with intermyofibrillar mitochondrial ANT remaining constant. This change in mitochondrial ANT content correlates with the previously reported cold-induced change in the sensitivity of mitochondria to palmitate-inhibited ATP synthesis [Roussel et al. (1998) FEBS Lett. 439, 258-262]. It is suggested that the mitochondrial ANT content enhances or reduces the fatty acid uncoupling activity in tissue, depending on the energetic state of mitochondria.  (+info)

Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic AMP formation in the duck and goose brain. (59/1326)

Two molecular forms of pituitary adenylate cyclase-activating polypeptide (PACAP), i.e., PACAP27 and PACAP38 (0.0001-1 microM), as well as vasoactive intestinal polypeptide (VIP; 0.1-3 microM), have been studied for their effects on cyclic AMP formation in the hypothalamus and cerebral cortex of duck and goose. All three peptides concentration-dependently stimulated cyclic AMP production in the tested brain regions of 2-3-weeks-old (young) ducks, with VIP showing at least one order of magnitude weaker activity than PACAP. This characteristics suggests the existence in the duck's brain of adenylyl cyclase-linked PAC1 receptors. Both forms of PACAP also stimulated the nucleotide formation in the cerebral cortex and hypothalamus of 5-6-months-old (adult) ducks or geese grown under natural environment. The peptides-evoked effects in adult and young ducks were comparable, and clearly greater than those found in adult geese. The present data extend our recent observations made on chicks, and suggest PACAP to be a potent stimulator of the cyclic AMP generation in the avian central nervous system.  (+info)

epsilon-crystallin from duck eye lens comparison of its quaternary structure and stability with other lactate dehydrogenases and complex formation with alpha-crystallin. (60/1326)

Taxon-specific epsilon-crystallin (epsilonC) from duck eye lens is identical to duck heart muscle lactate dehydrogenase. It forms a dimer of dimers with a dissociation constant of 2.2 x 10-7 M, far beyond the value observed for other vertebrate lactate dehydrogenases. Comparing the characteristics of wild-type epsilon-crystallin with those of three mutants, G115N, G119F and 115N/119F, representing the only significant peripheral sequence variations between duck epsilonC and chicken or pig heart muscle lactate dehydrogenase, no significant conformational differences are detectable. Regarding the catalytic properties, the Michaelis constant of the double mutant 115N/119F for pyruvate is found to be decreased; for wild-type enzyme, the effect is overcompensated by the high expression level of epsilonC in the eye lens. As taken from spectral analysis of the guanidine-induced and temperature-induced denaturation transitions, epsilonC in its dimeric state is relatively unstable, whereas the native tetramer exhibits the high intrinsic stability characteristic of common vertebrate heart and muscle lactate dehydrogenases. The denaturation mechanism of epsilonC is complex and only partially reversible. In the case of thermal unfolding, the predominant side reaction competing with the reconstitution of the native state is the kinetic partitioning between proper folding and aggregation. alpha-Crystallin, the major molecular chaperone in the eye lens, inhibits the aggregation of epsilonC by trapping the misfolded protein.  (+info)

Estimation of the rate of oxygen consumption of the common eider duck (Somateria mollissima), with some measurements of heart rate during voluntary dives. (61/1326)

The relationship between heart rate (f(H)) and rate of oxygen consumption (V(O2)) was established for a marine diving bird, the common eider duck (Somateria mollissima), during steady-state swimming and running exercise. Both variables increased exponentially with speed during swimming and in a linear fashion during running. Eleven linear regressions of V(O2) (ml kg(-1 )min(-1)) on f(H) (beats min(-1)) were obtained: five by swimming and six by running the birds. The common regression was described by V(O2)=10.1 + 0.15f(H) (r(2)=0.46, N=272, P<0.0001). The accuracy of this relationship for predicting mean V(O2) was determined for a group of six birds by recording f(H) continuously over a 2-day period and comparing estimated V(O2) obtained using the common regression with (i) V(O2) estimated using the doubly labelled water technique (DLW) and (ii) V(O2) measured using respirometry. A two-pool model produced the most accurate estimated V(O2) using DLW. Because of individual variability within mean values of V(O2) estimated using both techniques, there was no significant difference between mean V(O2) estimated using f(H) or DLW and measured V(O2) values (P>0.2), although individual errors were substantially less when f(H) was used rather than DLW to estimate V(O2). Both techniques are, however, only suitable for estimating mean V(O2) for a group of animals, not for individuals. Heart rate and behaviour were monitored during a bout of 63 voluntary dives by one female bird in an indoor tank 1.7 m deep. Tachycardia occurred both in anticipation of and following each dive. Heart rate decreased before submersion but was above resting values for the whole of the dive cycle. Mean f(H) at mean dive duration was significantly greater than f(H) while swimming at maximum sustainable surface speeds. Heart rate was used to estimate mean V(O2) during the dive cycle and to predict aerobic dive limit (ADL) for shallow dives.  (+info)

Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. (62/1326)

Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.  (+info)

The majority of duck hepatitis B virus reverse transcriptase in cells is nonencapsidated and is bound to a cytoplasmic structure. (63/1326)

The hepadnavirus reverse transcriptase binds cotranslationally to the viral pregenomic RNA. This ribonucleoprotein complex is then encapsidated into nascent viral core particles, where the reverse transcriptase copies the viral RNA into DNA. Here we report that 75% of the duck hepatitis B virus reverse transcriptase present in transfected LMH cells does not follow this well-known pathway but rather exists in the cell separate from the core protein or nucleocapsids. The nonencapsidated reverse transcriptase is also abundant in infected duck liver. The nonencapsidated reverse transcriptase exists as a complex set of isoforms that are most likely produced by posttranslational modification. Interestingly, only the smallest of these isoforms is encapsidated into viral core particles. The nonencapsidated reverse transcriptase is bound to a large cellular cytoplasmic structure(s) in a detergent-sensitive complex. The cellular distribution of the reverse transcriptase only partially overlaps that of the core protein, and this distribution is unaffected by blocking encapsidation. These observations raise the possibilities that the metabolic fate of the reverse transcriptase may be posttranscriptionally regulated and that the reverse transcriptase may have roles in the viral replication cycle beyond its well-known function in copying the viral genome.  (+info)

Inactivation of a hepadnavirus by electrolysed acid water. (64/1326)

Glutaraldehyde is used as a disinfectant for endoscopes, but is an irritant and so should be replaced by an alternative. Electrolysed acid water (EAW) has a bactericidal effect, and an endoscopic washing device using EAW has been developed in Japan. To investigate the effect of EAW on the infectivity of viruses, we treated duck hepatitis B virus (DHBV), which has similar properties to hepatitis B virus, with EAW, and determined the number of remaining infectious virus particles in a bioassay system. One-day-old Pekin ducks were inoculated with duck serum containing 10(5.5) ID(50) DHBV; the serum had previously been incubated with 100 volumes of EAW or ion-exchanged water at room temperature for 7 min. DHBV infection was indicated by detection of viral DNA in duck serum samples 1-8 weeks after inoculation. Treatment of serum with EAW diminished DHBV infectivity whereas treatment with ion-exchanged water did not. The virus load was estimated to have been reduced to 10(1)-10(3) ID(50) during the first 1 min and to <10(0.5) ID(50) in the next 6 min of incubation when compared with the control. Thus, EAW directly inactivates DHBV and its clinical application is recommended.  (+info)