Evaluation of rodent-only toxicology for early clinical trials with novel cancer therapeutics. (73/3906)

Preclinical toxicology studies are performed prior to phase I trials with novel cancer therapeutics to identify a safe clinical starting dose and potential human toxicities. The primary aim of this study was to evaluate the ability of rodent-only toxicology studies to identify a safe phase I trial starting dose. In addition, the ability of murine studies to predict the quantitative and qualitative human toxicology of cancer therapeutics was studied. Data for 25 cancer drugs were collated for which the preclinical and clinical routes and schedules of administration were either the same (22/25), or closely matched. The maximum tolerated dose/dose lethal to 10% of mice (MTD/LD10) was identified for 24 drugs, and in patients the maximum administered dose (MAD) was associated with dose-limiting toxicity (DLT) in initial clinical trials with 20 compounds. In addition, for 13 agents, the toxicity of the drug at one-tenth the mouse MTD/LD10 was also investigated in rats, following repeated administration (20 doses). A phase I trial starting dose of one-tenth the mouse MTD/LD10 (mg m(-2)) was, or would have been, safe for all 25 compounds. With the exception of nausea and vomiting, which cannot be assessed in rodents, other common DLTs were accurately predicted by the murine studies (i.e. 7/7 haematological and 3/3 neurological DLTs). For two of the 13 drugs studied in rats, repeated administration of one-tenth the mouse MTD/LD10 was toxic, leading to a reduction in the phase I trial starting dose; however, one-tenth the mouse MTD/LD10 was subsequently tolerated in patients. For the 20 drugs where clinical DLT was reached, the median ratio of the human MAD to the mouse MTD/LD10 was 2.6 (range 0.2-16) and the median ratio of the clinical starting dose to the MAD was 35 (range 2.3-160). In contrast, in 13 subsequent phase I trials with 11 of the initial 25 drugs, the median ratio of the clinical starting dose to the MAD was 2.8 (range 1.6-56), emphasizing the value of early clinical data in rapidly defining the dose range for therapeutic studies. For all 25 drugs studied, rodent-only toxicology provided a safe and rapid means of identifying the phase I trial starting dose and predicting commonly encountered DLTs. This study has shown that the routine use of a non-rodent species in preclinical toxicology studies prior to initial clinical trials with cancer therapeutics is not necessary.  (+info)

Differential expression of topoisomerase I and RAD52 protein in yeast reveals new facets of the mechanism of action of bisdioxopiperazine compounds. (74/3906)

A screening procedure which permits identification of compounds based on their activities against specific biological targets directly in a living organism, Saccharomyces cerevisiae, has been established as part of our new drug discovery programme. Use of this assay has provided the first direct evidence that TOP1 and RAD52 proteins are involved in the mode of action of bisdioxopiperazine ICRF compounds, which thus express a mode of action quite distinctive from the other known TOP2 inhibitors evaluated. The functional assay is based on a comparison of pairs of yeast differing in their phenotypes by specific traits: the expression or lack of expression of ectopic human DNA topoisomerase I, with or without that of the RAD52 gene. Amongst a series of anticancer agents, inhibitors of topoisomerase I (camptothecin) were identified as such in yeast expressing human topoisomerase I, whilst the presence or absence of RAD52 protein permitted the discrimination of compounds generating double-stranded DNA breaks, either directly (bleomycin) or involving DNA adduct formation (cisplatin), or indirectly with DNA damage mediated via inhibition of the topoisomerase II enzyme (etoposide). Notably, however, both the RAD52 protein and the lack of TOP1 enzyme appeared implicated in the cytotoxic activities of the series of bisdioxopiperazine ICRF compounds tested. This functional assay in a living organism therefore appears to provide a valuable tool for probing distinctive and specific mode(s) of action of diverse anticancer agents.  (+info)

Antimutagenic effects of centchroman--a contraceptive and a candidate drug for breast cancer in multiple mutational assays. (75/3906)

Centchroman (CC), a non-steroidal oral contraceptive and a candidate drug for breast cancer, has been reported to exhibit partial to complete remission of lesions in 40.5% of breast cancer patients. The potent anti-oestrogenic activity, negligible side-effects and anti-breast cancer activity of CC prompted us to evaluate the antimutagenic effects of this compound in a bacterial mutagenicity assay and CHO/HPRT and AS52/GPT mutation assays in vitro and in vivo in female Swiss albino mice as measured by both sister chromatid exchange (SCE) and chromosome aberrations (CA) against three known positive mutagen compounds, dimethylbenz[a]anthracene (DMBA), cyclophosphamide (CP) and mitomycin C (MMC). Antimutagenicity assays in Salmonella strains TA97a, TA100, TA98 and TA102 were carried out against commonly used known positive mutagens, sodium azide, 4-nitro-o-phenylenediamine, cumine hydroperoxide, 2-aminofluorene and danthron. A significantly reduced number of bacterial histidine revertant colonies was observed in the plates treated with 0.1, 1, 5 and 10 microg/plate CC and a positive compound when compared with bacterial plates treated with the respective positive compound alone. Ethyl methanesulfonate (EMS), a commonly used positive mutagen for CHO/HPRT and AS52/GPT gene mutation assays, was used for antimutagenicity assay in these cells. CC exhibited protective effects against the mutagenicity of EMS in these two mammalian cell mutation assays, CHO/HPRT and AS52/GPT. In the in vivo studies, pretreatment with CC reduced DMBA-induced SCE and CA and CP- and MMC-induced CA when compared with the group treated only with the positive compounds. These results indicate that CC can reduce the mutagenic effects of known genotoxic compounds.  (+info)

Enhancement of platinum-drug cytotoxicity in a human head and neck squamous cell carcinoma line and its platinum-resistant variant by liposomal amphotericin B and phospholipase A2-II. (76/3906)

Platinum drugs comprise one of the main classes of chemotherapy drugs that can induce remissions in various solid tumors. Although tumors often regress on treatment with cis-diamminedichloroplatinum II (cisplatin) or cis-diammine-1,1-cyclobutane dicarboxylate platinum II (carboplatin), they usually relapse as a drug-resistant tumor. Most mechanisms of platinum resistance could be overcome by increasing the amount of drug that is accumulated by tumor cells. Amphotericin B (Amph B) is efficient at increasing platinum drug uptake, but because of nephrotoxicity associated with extended usage, and the potential for synergistic nephrotoxicity when used with platinum drugs, Amph B has not been used clinically for this purpose. A liposomal preparation of Amph B (LipoAmph B), which is substantially less nephrotoxic, was studied for its ability to enhance platinum-drug toxicity to a human oral squamous cell carcinoma line, HN-5a, and its carboplatin-resistant variant, 5a/carbo-15a, in which cisplatin accumulation was reduced by approximately 40%. Amph B at 10 microg/ml enhanced cisplatin accumulation by approximately 100% in both cell lines, enhancing cytotoxicity of the drugs by 35 to 60%, and completely reversed resistance to both cisplatin and carboplatin. LipoAmph B in the presence of phospholipase A(2)-II (PLA2-II) was able to enhance cisplatin and carboplatin cytotoxicity as effectively as free Amph B in both cell lines. At optimal concentrations, LipoAmph B plus PLA2-II enhanced drug uptake sufficiently to abolish resistance in the platinum-resistant line. Because PLA2-II is elevated in some tumor microenvironments and in plasma of ill patients, LipoAmph B has potential clinical usefulness as a modulator of platinum-drug efficacy.  (+info)

NH2-terminal pentapeptide of endothelial interleukin 8 is responsible for the induction of apoptosis in leukemic cells and has an antitumor effect in vivo. (77/3906)

We have reported that endothelial interleukin 8 (IL-8) induces apoptosis in leukemic cells in vitro and in vivo, and that interaction between endothelial cells and leukemic cells causes induction of apoptosis through the release of endothelial IL-8 (Y. Terui et al., Biochem. Biophys. Res. Commun., 243: 407-411, 1998; Y. Terui et al., Blood, 92: 2672-2680, 1998). Here, we examined whether a pentapeptide corresponding to the NH2-terminal region of endothelial IL-8 can induce apoptosis in leukemic cells. The NH2-terminal pentapeptide Ala-Val-Leu-Pro-Arg (AVLPR) was found to significantly induce apoptosis in the leukemic cell lines K562, HL-60, Jurkat, and Daudi, as compared with the COOH-terminal pentapeptide Arg-Glu-Ala-Asn-Ser (REANS). Moreover, the NH2-terminal pentapeptide AVLPR significantly inhibited growth of i.p. and s.c. tumor masses of K562 cells and induced apoptosis in these cells in vivo. The active site of endothelial IL-8 is the NH2-terminal pentapeptide AVLPR, and this may serve as a new therapy for hematological malignancies.  (+info)

A new ligand for the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), GW7845, inhibits rat mammary carcinogenesis. (78/3906)

We have tested a new ligand for peroxisome proliferator-activated receptor-gamma, GW7845, as an inhibitor of experimental mammary carcinogenesis, using the classic rat model with nitrosomethylurea as carcinogen. Rats were first treated with a single dose of nitrosomethylurea (50 mg/kg body weight, i.p.). Starting 1 week later, they were fed GW7845, at either 60 or 30 mg/kg of diet, for 2 months. This agent significantly reduced tumor incidence, tumor number, and tumor weight at both doses. This is the first report of the use of a ligand for peroxisome proliferator-activated receptor-gamma to prevent experimental breast cancer.  (+info)

CHS 828, a novel pyridyl cyanoguanidine with potent antitumor activity in vitro and in vivo. (79/3906)

A new class of recently discovered antineoplastic agents, the pyridyl cyanoguanidines, exert a potent antitumor activity in rodents after oral administration. Optimization in vitro and in vivo has resulted in the selection of the lead candidate CHS 828 (N-(6-chlorophenoxyhexyl)-N'cyano-N"-4-pyridylguanidine). CHS 828 was found to exert potent cytotoxic effects in human breast and lung cancer cell lines, with lesser effects on normal fibroblasts and endothelial cells. In a study using a panel of cell lines with different resistance patterns, the effects of CHS 828 showed a low correlation with the activity patterns of known anticancer agents, and no sensitivity to known mechanisms of multidrug resistance was observed. In nude mice bearing human tumor xenografts, CHS 828, at doses from 20 to 50 mg/kg/day p.o., inhibited the growth of MCF-7 breast cancer tumors and caused regression of NYH small cell lung cancer tumors. Oral administration of CHS 828 once weekly improved efficacy without increasing toxicity. CHS 828 was found to compare favorably with established chemotherapeutic agents such as cyclophosphamide, etoposide, methotrexate, and paclitaxel. In mice with NYH tumors, long-term survival (>6 months) was observed after treatment with CHS 828 was stopped. In conclusion, CHS 828 is an effective new antitumor agent, with a potentially new mechanism of action. CHS 828 is presently being tested in Phase I clinical trials in collaboration with the European Organization for Research and Treatment of Cancer.  (+info)

Ceramide-beta-D-glucuronide: synthesis, digestion, and suppression of early markers of colon carcinogenesis. (80/3906)

Dietary sphingolipids inhibit chemically induced colon cancer in mice. The most likely mediators of this effect are the metabolites ceramide (Cer) and sphingosine, which induce growth arrest and apoptosis in transformed cells. Sphingolipids are digested in both the upper and the lower intestine; therefore, a more colon-specific method of delivery of sphingolipids might be useful. A Cer analogue with a D-glucuronic acid attached at the primary hydroxyl of N-palmitoyl-D-sphingosine (Cer-beta-glucuronide) was synthesized and evaluated as a substrate for Escherichia coli beta-glucuronidase and colonic digestion, as well as for suppression of early events in colon carcinogenesis in CFI mice treated with 1,2-dimethylhydrazine. Purified beta-glucuronidase (EC 3.2.1.31) and colonic segments (as a source of colonic enzymes and microflora) hydrolyzed Cer-beta-glucuronide to release Cer, as analyzed by tandem mass spectrometry. More than 75% of the Cer-beta-glucuronide was cleaved in an 8-h incubation with the colonic segments. When Cer-beta-glucuronide was administered for 4 weeks as 0.025% and 0.1% of the diet (AIN 76A) to 1,2-dimethylhydrazine-treated mice, there were significant reductions in colonic cell proliferation, as determined by in vivo BrdUrd incorporation, and in the appearance of aberrant crypt foci. The effect of dietary Cer-beta-glucuronide on aberrant crypt foci correlated significantly with the length of the colon, which suggests that Cer-beta-glucuronide was most effective when there was a larger compartment for digestion. Thus, synthetic sphingolipids that target the colon for the release of the bioactive backbones offer a promising approach to colon cancer prevention.  (+info)