A possible mode of cardiovascular actions of dopamine in dogs. (9/10578)

A possible mode of cardiovascular actions of dopamine was studied using ephedrine. In the dog pretreated with repeated administrations of ephedrine (total dose, 40 or 80 mg/kg, i.v.) or with combined administrations of ephedrine (total dose, 90 mg/kg, s.c. and i.v.) and reserpine (2 mg/kg, s.c., 24 hr previously), pressor responses to dopamine were eliminated and reversed to depressor responses whereas depressor responses to dopamine were potentiated. Positive chronotropic effects of dopamine were almost eliminated. Pressor and positive chronotropic effects of tyramine were almost abolished. Sympathomimetic effect of noradrenaline and adrenaline were potentiated while those of isoprenaline were inhibited. In the heart-lung preparation of ephedrine-treated dogs (total dose, 40 mg/kg, i.v.), cardiac stimulating effects of dopamine and tyramine were strongly depressed, and those of noradrenaline, adrenaline and isoprenaline were reduced to some extent. In the open-chest dogs, after pretreatment of cocaine (4 mg/kg, i.v.), pressor, positive inotropic and chronotropic effects of noradrenaline were potentiated, whilst those of tyramine were inhibited. Those of dopamine were not visibly altered, but depressor, negative chronotropic and inotropic effects of dopamine appeared at small doses. In the ephedrine-pretreated dogs, these sympathomimetic effects of dopamine and tyramine after cocaine were strongly depressed and those of noradrenaline were inhibited to a certain degree. The results obtained with ephedrine suggest that dopamine differs from other catecholamines and tyramine in the mode of cardiovascular actions.  (+info)

Pharmacodynamic actions of (S)-2-[4,5-dihydro-5-propyl-2-(3H)-furylidene]-1,3-cyclopentanedione (oudenone). (10/10578)

The pharmacodynamic actions of (S)-2-[4,5-dihydro-5-propyl-2(3H)-furylidene]-1,3-cyclopentanedione (oudenone) were studied in both anesthetized animals and isolated organs. Oudenone (10--40 mg/kg i.v.) induced an initial rise in blood pressure followed by a prolonged hypotension in the anesthetized rats. In unanesthetized spontaneously hypertensive rats (SHR), oudenone (5--200 mg/kg p.o.) caused a dose-related decrease in the systolic blood pressure. The initial pressor effect was diminished by pretreatments with phentolamine, guanethidine, hexamethonium and was abolished in the pithed rats. In addition, intracisternal administrations of oudenone (100--600 mug/kg) showed a marked increase in blood pressure in the anesthetized rats, suggesting that the pressor effect may be due to centrally mediated actions. Oudenone, given intra-arterially into the femoral artery (400--800 mug/kg), caused a long-lasting vasodilation in anesthetized dogs. At a relatively high dose (40 mg/kg i.v.), oudenone antagonized all pressor responses to autonomic agents and central vagus nerve stimulation in anesthetized rats and dogs, however, oudenone showed no anti-cholinergic,-histaminergic, beta-adrenergic and adrenergic neuron blocking properties.  (+info)

The effect of cotinine or cigarette smoke co-administration on the formation of O6-methylguanine adducts in the lung and liver of A/J mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (11/10578)

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, induces lung adenomas in A/J mice, following a single intraperitoneal (i.p.) injection. However, inhalation of tobacco smoke has not induced or promoted tumors in these mice. NNK-induced lung tumorigenesis is thought to involve O6-methylguanine (O6MeG) formation, leading to GC-->AT transitional mispairing and an activation of the K-ras proto-oncogene in the A/J mouse. NNK can be metabolized by several different cytochromes P450, resulting in a number of metabolites. Formation of the promutagenic DNA adduct O6MeG is believed to require metabolic activation of NNK by cytochrome P450-mediated alpha-hydroxylation of the methylene group adjacent to the N-nitroso nitrogen to yield the unstable intermediate, methanediazohydroxide. Nicotine, cotinine (the major metabolite of nicotine), and aqueous cigarette tar extract (ACTE) have all been shown to effectively inhibit metabolic activation of NNK to its mutagenic form, most likely due to competitive inhibition of the cytochrome P450 enzymes involved in alpha-hydroxylation of NNK. The objective of the current study was to monitor the effects of cotinine and cigarette smoke (CS) on the formation of O6MeG in target tissues of mice during the acute phase of NNK treatment. To test the effect of cotinine, mature female A/J mice received a single intraperitoneal injection of NNK (0, 2.5, 5, 7.5, or 10 mumole/mouse) with cotinine administered at a total dose of 50 mumole/mouse in 3 separate i.p. injections, administered 30 min before, immediately after, and 30 min after NNK treatment. To test the effect of whole smoke exposure on NNK-related O6MeG formation, mice were exposed to smoke generated from Kentucky 1R4F reference cigarettes at 0, 0.4, 0.6, or 0.8 mg wet total particulate matter/liter (WTPM/L) for 2 h, with a single i.p. injection of NNK (0, 3.75, or 7.5 mumole/mouse) midway through the exposure. Cigarette smoke alone failed to yield detectable levels of O6MeG. The number of O6MeG adducts following i.p. injection of NNK was significantly (p < 0.05) reduced in both lung and liver by cotinine and by cigarette smoke exposure. Our results demonstrate that NNK-induced O6MeG DNA adducts in A/J mice are significantly reduced when NNK is administered together with either cotinine, the major metabolite of nicotine, or the parental complex mixture, cigarette smoke.  (+info)

Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. (12/10578)

Ethambutol (EMB) is the most frequent "fourth drug" used for the empiric treatment of Mycobacterium tuberculosis and a frequently used drug for infections caused by Mycobacterium avium complex. The pharmacokinetics of EMB in serum were studied with 14 healthy males and females in a randomized, four-period crossover study. Subjects ingested single doses of EMB of 25 mg/kg of body weight under fasting conditions twice, with a high-fat meal, and with aluminum-magnesium antacid. Serum was collected for 48 h and assayed by gas chromatography-mass spectrometry. Data were analyzed by noncompartmental methods and by a two-compartment pharmacokinetic model with zero-order absorption and first-order elimination. Both fasting conditions produced similar results: a mean (+/- standard deviation) EMB maximum concentration of drug in serum (Cmax) of 4.5 +/- 1.0 micrograms/ml, time to maximum concentration of drug in serum (Tmax) of 2.5 +/- 0.9 h, and area under the concentration-time curve from 0 h to infinity (AUC0-infinity) of 28.9 +/- 4.7 micrograms.h/ml. In the presence of antacids, subjects had a mean Cmax of 3.3 +/- 0.5 micrograms/ml, Tmax of 2.9 +/- 1.2 h, and AUC0-infinity of 27.5 +/- 5.9 micrograms.h/ml. In the presence of the Food and Drug Administration high-fat meal, subjects had a mean Cmax of 3.8 +/- 0.8 micrograms/ml, Tmax of 3.2 +/- 1.3 h, and AUC0-infinity of 29.6 +/- 4.7 micrograms.h/ml. These reductions in Cmax, delays in Tmax, and modest reductions in AUC0-infinity can be avoided by giving EMB on an empty stomach whenever possible.  (+info)

A multiple drug interaction study of stavudine with agents for opportunistic infections in human immunodeficiency virus-infected patients. (13/10578)

The effects of multiple opportunistic infection medications on stavudine pharmacokinetics were evaluated. Ten patients with CD4 counts of less than 200 cells/mm3 received stavudine (40 mg twice daily) in combination with one to three other drugs used to treat opportunistic infections. Serial blood samples for stavudine concentrations were collected after 1 week of therapy on each regimen and assayed for stavudine by using a validated high-pressure liquid chromatography method. Although the maximum concentration of drug in serum was significantly decreased when the drug was given in combination with three opportunistic infection medications, the area under the concentration-time curve did not significantly differ across various treatment regimens. Stavudine exposure was not significantly altered by multiple concomitant medications. Side effects were minor throughout the 3-month study period. The tolerability of stavudine, combined with its lack of drug interactions, makes it an attractive agent for use as part of a combination regimen.  (+info)

Differential blockade of gamma-aminobutyric acid type A receptors by the neuroactive steroid dehydroepiandrosterone sulfate in posterior and intermediate pituitary. (14/10578)

Dehydroepiandrosterone sulfate (DHEAS) is a neuroactive steroid with antagonist action at gamma-aminobutyric acid type A (GABAA) receptors. Patch-clamp techniques were used to investigate DHEAS actions at GABAA receptors of the rat pituitary gland at two distinct loci: posterior pituitary nerve terminals and intermediate pituitary endocrine cells. The GABA responses in these two regions were quite different, with posterior pituitary responses having smaller amplitudes and desensitizing more rapidly and more completely. DHEAS blockade of GABAA receptors in the two regions also was different. In posterior pituitary, a site with an apparent dissociation constant of 15 microM accounted for most of the blockade, but a small fraction of blockade may be related to a site with a dissociation constant in the nanomolar range. In the intermediate lobe, DHEAS sensitivities in the nanomolar and micromolar ranges were clearly evident, in proportions that varied widely from cell to cell. Regardless of whether the GABA response of a cell was highly sensitive or weakly sensitive to DHEAS, GABA alone evoked currents that were indistinguishable in terms of amplitude, desensitization kinetics, and GABA sensitivity. Thus, the structural elements responsible for DHEAS blockade have a highly selective impact on receptor function. GABAA receptors with nanomolar sensitivity to DHEAS have not been described previously. This suggests that DHEAS may have an important role in the modulation of neuropeptide secretion, and the diverse properties of GABAA receptors in the rat pituitary provide mechanisms for selective regulation of the different peptidergic systems of this gland.  (+info)

Suppression of replication of multidrug-resistant HIV type 1 variants by combinations of thymidylate synthase inhibitors with zidovudine or stavudine. (15/10578)

The replication of recombinant multidrug-resistant HIV-1 clones modeled on clinically derived resistant HIV-1 strains from patients receiving long-term combination therapy with zidovudine (AZT) plus 2',3'-dideoxycytidine was found to regain sensitivity to AZT and stavudine (D4T) as a consequence of a pharmacologically induced decrease in de novo dTMP synthesis. The host-cell system used was phytohemagglutinin-stimulated peripheral blood mononuclear cells; dTMP and dTTP depletion were induced by single exposures to a low level of the thymidylate synthase inhibitor 5-fluorouracil (5-FU) or its deoxynucleoside, 2'-deoxy-5-fluorouridine. The host-cell response to the latter was biphasic: a very rapid decrease in the rate of de novo dTMP formation and, consequently, in intracellular dTTP pools, followed by slower recovery in both indices over 3 to 24 h. With the additional presence of AZT or D4T, however, replication of the multidrug-resistant HIV-1 strains remained inhibited, indicating dependence of HIV DNA chain termination by AZT-5'-monophosphate or 2',3'-didehydro-2', 3'-dideoxythymidine-5'-monophosphate in these resistant strains on simultaneous inhibition of host-cell de novo synthesis of thymidine nucleotides. No effect on viability of control (uninfected) phytohemagglutinin-stimulated/peripheral blood mononuclear cells was noted on 6-day exposures to 5-FU or 2'-deoxy-5-fluorouridine alone or in combination with AZT or D4T, even at drug levels severalfold higher than those used in the viral inhibition studies. These studies may provide useful information for the potential clinical use of AZT/5-FU or D4T/5-FU combinations for the prevention or reversal of multidrug resistance associated with long-term dideoxynucleoside combination therapy.  (+info)

Determination of free interstitial concentrations of piperacillin-tazobactam combinations by microdialysis. (16/10578)

The investigation of tissue penetration and distribution of antibiotics is of great importance, since infections occur mostly in the tissues. The aim of this study was to investigate the pharmacokinetics of piperacillin and tazobactam, alone and in combination, by measuring total plasma and free interstitial concentrations, and to examine the relationship between free levels of both drugs in blood and those in the extracellular space. Piperacillin and tazobactam were administered, alone and in combination, to anaesthetized rats as a single iv bolus dose. Total plasma concentrations and free extracellular concentrations were quantified by HPLC. In-vivo microdialysis sampling was used to study the free tissue distribution patterns of both drugs. The pharmacokinetics of piperacillin and tazobactam in plasma were consistent with a two-compartment body model. Piperacillin pharmacokinetics were not influenced by co-administration of tazobactam. Tazobactam's volumes of distribution and clearance were decreased by the co-administration of piperacillin and the area under the curve was significantly increased. Comparisons between calculated free concentrations in the peripheral compartment for both drugs and measured free extracellular concentrations revealed excellent agreement. For piperacillin and tazobactam, alone and in combination, predictions of the concentration-time profiles of free drug in the peripheral compartment can be made on the basis of plasma data.  (+info)