Safety and efficacy of multilamellar liposomal nystatin against disseminated candidiasis in persistently neutropenic rabbits. (73/3649)

The activity of liposomal nystatin (L-Nys) against subacute disseminated candidiasis was investigated in persistently neutropenic rabbits. Antifungal therapy was administered for 10 days starting 24 h after intravenous inoculation of 10(3) blastoconidia of Candida albicans. Responses to treatment were assessed by the quantitative clearance of the organism from blood and tissues. Treatments consisted of L-Nys at dosages of 2 and 4 mg/kg of body weight/day (L-Nys2 and L-Nys4, respectively) amphotericin B deoxycholate at 1 mg/kg/day (D-AmB), and fluconazole at 10 mg/kg/day (Flu). All treatments were given intravenously once daily. Compared to the results for untreated but infected control animals, treatment with L-Nys2, L-Nys4, D-AmB, and Flu resulted in a significant clearance of the residual burden of C. albicans from the kidney, liver, spleen, lung, and brain (P < 0.0001 by analysis of variance). When the proportion of animals infected at at least one of the five tissue sites studied was evaluated, a dose-dependent response to treatment with L-Nys was found (P < 0.05). Compared to D-AmB-treated rabbits, mean serum creatinine and blood urea nitrogen levels at the end of therapy were significantly lower in animals treated with L-Nys2 (P < 0.001) and L-Nys4 (P < 0.001 and P < 0.01, respectively). L-Nys was less nephrotoxic than conventional amphotericin B and had dose-dependent activity comparable to that of amphotericin B for the early treatment of subacute disseminated candidiasis in persistently neutropenic rabbits.  (+info)

Direct injection of liposome-encapsulated doxorubicin optimizes chemomyectomy in rabbit eyelid. (74/3649)

PURPOSE: Doxorubicin chemomyectomy presently represents the only permanent, nonsurgical treatment for blepharospasm and hemifacial spasm. The major deterrent to an otherwise extremely effective treatment protocol is the development in patients of localized inflammation, discomfort, and skin injury over the injection site. As a potential alternative therapy, Doxil (Sequus, Menlo Park, CA), a liposome-encapsulated form of doxorubicin that displays tissue-selective therapeutic effects compared with free doxorubicin, was examined. These effects have been related to its increased retention in tissues and its sustained release over time. For the skin, Doxil is classified as an irritant rather than a vesicant. METHODS: Rabbits received direct injections of 1, 2, or 3 mg Doxil alone or in sequence with other agents directly into the lower eyelids. The treated eyelids were examined daily for signs of skin injury. One month after the last injection, the rabbits were euthanatized, and their eyelids were examined histologically for the effect of Doxil on the orbicularis oculi muscle and the skin. RESULTS: At equivalent milligram doses of free doxorubicin, Doxil spared the skin from injury. Doxil was only approximately 60% as effective in killing muscles as the same milligram dose of free doxorubicin. However, either two injections of Doxil spaced 2 months apart or preinjury of the lid with bupivacaine before a single dose of Doxil treatment resulted in increased muscle loss compared with a single dose of Doxil alone and was as effective as free doxorubicin. Higher doses of Doxil did not increase the desired myotoxic effect; apparently, the dose effect levels off at a maximum. Signs of skin injury were minimal; there were small or no adverse skin changes at the maximum effective myotoxic doses. CONCLUSIONS: Injection of Doxil resulted in significant reduction of skin injury compared with doxorubicin alone. Although single injections of Doxil were myotoxic, multiple exposure of the eyelid to the liposome-encapsulated form substantially improved myotoxicity while sparing the skin. Repeated doses of the liposome-encapsulated form of doxorubicin may be as clinically effective as free doxorubicin injections and may produce fewer unwanted side effects.  (+info)

In-vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B, amphotericin B lipid complex, amphotericin B desoxycholate, fluconazole and itraconazole. (75/3649)

The in-vitro susceptibilities of 120 clinical isolates of yeasts to liposomal nystatin were compared with those to amphotericin B lipid complex (ABLC), liposomal amphotericin B (LAB), amphotericin B cholesteryl sulphate (ABCD), amphotericin B desoxycholate, nystatin, fluconazole and itraconazole. Yeast isolates examined included strains of Candida albicans, Candida parapsilosis, Candida glabrata, Candida krusei, Candida guilliermondii, Candida tropicalis, Candida kefyr, Candida viswanathii, Candida famata, Candida rugosa, Rhodotorula rubra, Trichosporon spp., Cryptococcus laurentii and Cryptococcus neoformans. The mean MICs for all strains examined were: liposomal nystatin 0.96 mg/L; nystatin 0.54 mg/L; ABLC 0.65 mg/L; LAB 1.07 mg/L; ABCD 0.75 mg/L; amphotericin B 0.43 mg/L; fluconazole 5.53 mg/L; and itraconazole 0.33 mg/L. No significant differences were seen between the activity of liposomal nystatin and the polyene drugs or itraconazole, but liposomal nystatin was more active than fluconazole. MICs were lower than the reported blood concentrations following therapeutic doses of this drug, indicating the potential for a therapeutic use of liposomal nystatin in humans. These results indicate good activity in vitro against medically important yeasts, which compares favourably with the activities of other currently available antifungal drugs. Liposomal nystatin may have a role in the treatment of disseminated and systemic mycoses.  (+info)

Liposomal clodronate eliminates synovial macrophages, reduces inflammation and ameliorates joint destruction in antigen-induced arthritis. (76/3649)

OBJECTIVES: To investigate the efficacy of a single i.v. dose of clodronate encapsulated within small unilamellar vesicles in suppressing joint inflammation and the histological progression of rat antigen-induced arthritis (AIA). METHODS: Rats with AIA received a single i.v. injection of 20 mg of clodronate encapsulated within small unilamellar vesicles (SUVc) or larger multilamellar vesicles (MLVc) 7 days post-arthritis induction. Free clodronate or saline were used as negative controls. RESULTS: SUVc was shown to be more effective than MLVc, sustaining a significant reduction in knee swelling for up to 7 days after the initial systemic administration. Knee swelling in free clodronate-treated animals was not significantly affected. The increased efficacy of SUVc in reducing inflammation and joint destruction was associated with a significant depletion of resident ED1+, ED2+ and ED3+ macrophages from the synovial membrane (SM). CONCLUSIONS: SUVc is more efficient than MLVc in reducing the severity of inflammation and joint destruction in rat AIA, and is associated with the specific elimination of macrophage subpopulations from the SM.  (+info)

Carrier-mediated uptake of lucifer yellow in skate and rat hepatocytes: a fluid-phase marker revisited. (77/3649)

Uptake of lucifer yellow (LY), a fluorescent disulfonic acid anionic dye, was studied in isolated skate (Raja erinacea) perfused livers and primary hepatocytes to evaluate its utility as a fluid-phase marker in these cells. However, our findings demonstrated that LY is transported across the plasma membrane of skate hepatocytes largely via carrier-mediated mechanisms. Isolated perfused skate livers cleared 50% of the LY from the recirculating perfusate within 1 h of addition of either 22 or 220 microM LY, with only 4.5 and 9% of the LY remaining in the perfusate after 7 h, respectively. Most of the LY was excreted into bile, resulting in high biliary LY concentrations (1 and 10 mM at the two doses, respectively), indicating concentrative transport into bile canalicular lumen. LY uptake by freshly isolated skate hepatocytes was temperature sensitive, exhibited saturation kinetics, and was inhibited by other organic anions. Uptake was mediated by both sodium-dependent [Michaelis-Menten constant (K(m)), 125 +/- 57 microM; maximal velocity (V(max)), 1.5 +/- 0.2 pmol. min(-1). mg cells(-1)] and sodium-independent (K(m), 207 +/- 55 microM; V(max), 1.7 +/- 0.2 pmol. min(-1). mg cells(-1)) mechanisms. Both of these uptake mechanisms were inhibited by various organic anions and transport inhibitors, including furosemide, bumetanide, sulfobromophthalein, rose bengal, probenecid, N-ethylmaleimide, taurocholate, and p-aminohippuric acid. Fluorescent imaging techniques showed intracellular vesicular compartmentation of LY in skate hepatocyte clusters. Studies in perfused rat livers also indicated that LY is taken up against a concentration gradient and concentrated in bile. LY uptake in isolated rat hepatocytes was saturable, but only at high concentrations, and demonstrated a K(m) of 3.7 +/- 1.0 mM and a V(max) of 1.75 +/- 0.16 nmol. min(-1). mg wet wt(-1). These results indicate that LY is transported into skate and rat hepatocytes and bile largely by carrier-mediated mechanisms, rather than by fluid-phase endocytosis.  (+info)

Polyethylene glycol enhances lipoplex-cell association and lipofection. (78/3649)

The association between liposome-DNA complexes (lipoplexes) and targeted cell membranes is a limiting step of cationic liposome-mediated transfection. A novel technique was developed where lipoplex-cell membrane association is enhanced by the addition of 2-6% polyethylene glycol (PEG) to the transfection media. Lipoplex-cell association was found to increase up to 100 times in the presence of PEG. Transfection increased correspondingly in the presence of PEG. This increase was found in several cell lines. These results show that lipoplex adsorption to cell membranes is a critical step in liposome-mediated transfection. This step can be facilitated by PEG-induced particle aggregation.  (+info)

Targeting lymph nodes with liposomes bearing anti-HLA-DR Fab' fragments. (79/3649)

The ability of liposomes bearing anti-HLA-DR Fab' fragments to target cells expressing the human HLA-DR determinant of the major histocompatibility complex class II (MHC-II) has been evaluated and compared to that of conventional liposomes. Anti-HLA-DR immunoliposomes did not bind to HLA-DR-negative cells. In contrast, a high level of binding was observed following incubation of immunoliposomes with cells bearing important levels of human HLA-DR. The accumulation of conventional and murine anti-HLA-DR immunoliposomes in different tissues has been investigated following a single subcutaneous injection given in the upper back of C3H mice. Anti-HLA-DR immunoliposomes resulted in a much better accumulation in the cervical and brachial lymph nodes when compared to conventional liposomes. The accumulation in the liver was similar for both liposomal preparations, whereas an approximately twofold decrease in accumulation was observed for immunoliposomes in the spleen. Given that HLA-DR surface marker is expressed on monocyte/macrophages and activated CD4+ T lymphocytes, the primary cellular reservoirs of the human immunodeficiency virus (HIV), the use of liposomes bearing surface-attached anti-HLA-DR could constitute a convenient strategy to more efficiently treat this debilitating retroviral disease. Moreover, the reported incorporation of high amounts of host-encoded HLA-DR proteins by HIV particles renders the use of liposomes bearing anti-HLA-DR antibodies even more attractive.  (+info)

Substrate specificity of the periplasmic dipeptide-binding protein from Escherichia coli: experimental basis for the design of peptide prodrugs. (80/3649)

Pure dipeptide-binding protein (DppA) from Escherichia coli was studied in a filter binding assay to determine its binding specificity. A substrate:DppA stoichiometry of 1:1 was found with both [14C]AlaAla and Ala[14C]Phe. Surprisingly, substrate binding did not vary over the pH range pH 3-9.5. Different dipeptides yielded liganded protein with various pI values, implying that DppA can undergo subtly different conformational changes to accommodate different substrates. Using [125I]Tyr-peptides as substrates in competition assays, the relative binding affinities for a range of dipeptides were found to parallel their overall transport rates into E. coli through the dipeptide permease (Dpp), showing that DppA alone controls the specificity of Dpp. With a series of substituted glycyl peptides, binding affinity was progressively enhanced by alkylation (with methyl to butyl) of the N-terminal alpha-amino group. Thus, results from this approach provide an essential experimental basis, which complements the information from the crystal structure of DppA, for the design of peptidomimetic antibacterials targeted for transport through Dpp.  (+info)