Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. (33/15687)

Charged residues in the S4 transmembrane segment play a key role in determining the sensitivity of voltage-gated ion channels to changes in voltage across the cell membrane. However, cooperative interactions between subunits also affect the voltage dependence of channel opening, and these interactions can be altered by making substitutions at uncharged residues in the S4 region. We have studied the activation of two mutant Shaker channels that have different S4 amino acid sequences, ILT (V369I, I372L, and S376T) and Shaw S4 (the S4 of Drosophila Shaw substituted into Shaker), and yet have very similar ionic current properties. Both mutations affect cooperativity, making a cooperative transition in the activation pathway rate limiting and shifting it to very positive voltages, but analysis of gating and ionic current recordings reveals that the ILT and Shaw S4 mutant channels have different activation pathways. Analysis of gating currents suggests that the dominant effect of the ILT mutation is to make the final cooperative transition to the open state of the channel rate limiting in an activation pathway that otherwise resembles that of Shaker. The charge movement associated with the final gating transition in ILT activation can be measured as an isolated component of charge movement in the voltage range of channel opening and accounts for 13% ( approximately 1.8 e0) of the total charge moved in the ILT activation pathway. The remainder of the ILT gating charge (87%) moves at negative voltages, where channels do not open, and confirms the presence of Shaker-like conformational changes between closed states in the activation pathway. In contrast to ILT, the activation pathway of Shaw S4 seems to involve a single cooperative charge-moving step between a closed and an open state. We cannot detect any voltage-dependent transitions between closed states for Shaw S4. Restoring basic residues that are missing in Shaw S4 (R1, R2, and K7) rescues charge movement between closed states in the activation pathway, but does not alter the voltage dependence of the rate-limiting transition in activation.  (+info)

Conservation of the expression and function of apterous orthologs in Drosophila and mammals. (34/15687)

The Drosophila apterous (ap) gene encodes a protein of the LIM-homeodomain family. Many transcription factors of this class have been conserved during evolution; however, the functional significance of their structural conservation is generally not known. ap is best known for its fundamental role as a dorsal selector gene required for patterning and growth of the wing, but it also has other important functions required for neuronal fasciculation, fertility, and normal viability. We isolated mouse (mLhx2) and human (hLhx2) ap orthologs, and we used transgenic animals and rescue assays to investigate the conservation of the Ap protein during evolution. We found that the human protein LHX2 is able to regulate correctly ap target genes in the fly, causes the same phenotypes as Ap when ectopically produced, and most importantly rescues ap mutant phenotypes as efficiently as the fly protein. In addition, we found striking similarities in the expression patterns of the Drosophila and murine genes. Both mLhx2 and ap are expressed in the respective nerve cords, eyes, olfactory organs, brain, and limbs. These results demonstrate the conservation of Ap protein function across phyla and argue that aspects of its expression pattern have also been conserved from a common ancestor of insects and vertebrates.  (+info)

gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. (35/15687)

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder leading to the widespread development of benign tumors that often contain giant cells. We show that the Drosophila gene gigas encodes a homolog of TSC2, a gene mutated in half of TSC patients. Clones of gigas mutant cells induced in imaginal discs differentiate normally to produce adult structures. However, the cells in these clones are enlarged and repeat S phase without entering M phase. Our results suggest that the TSC disorder may result from an underlying defect in cell cycle control. We have also identified a Drosophila homolog of TSC1.  (+info)

Transducing the Dpp morphogen gradient in the wing of Drosophila: regulation of Dpp targets by brinker. (36/15687)

Dpp, a TGFbeta, organizes pattern in the Drosophila wing by acting as a graded morphogen, activating different targets above distinct threshold concentrations. Like other TGFbetas, Dpp appears to induce transcription directly via activation of a SMAD, Mad. However, here we demonstrate that Dpp can also control gene expression indirectly by downregulating the expression of the brinker gene, which encodes a putative transcription factor that functions to repress Dpp targets. The medial-to-lateral Dpp gradient along the anterior-posterior axis is complemented by a lateral-to-medial gradient of Brinker, and the presence of these two opposing gradients may function to allow cells to detect small differences in Dpp concentration and respond by activating different target genes.  (+info)

The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. (37/15687)

decapentaplegic (dpp), a Drosophila member of the TGFbeta family of secreted molecules, functions as a long-range morphogen in patterning of the embryo and the adult appendages. Dpp signals via the SMAD proteins Mad and Medea. Here we show that in the absence of brinker (brk), Mad is not required for the activation of Dpp target genes that depend on low levels of Dpp. brk encodes a novel protein with features of a transcriptional repressor. brk itself is negatively regulated by Dpp. Dpp signaling might relieve brk's repression of low-level target genes either by transcriptional repression of brk or by antagonizing a repressor function of brk at the target gene promoters.  (+info)

Developmental pathways: Sonic hedgehog-Patched-GLI. (38/15687)

Developmental pathways are networks of genes that act coordinately to establish the body plan. Disruptions of genes in one pathway can have effects in related pathways and may result in serious dysmorphogenesis or cancer. Environmental exposures can be associated with poor pregnancy outcomes, including dysmorphic offspring or children with a variety of diseases. An important goal of environmental science should be reduction of these poor outcomes. This will require an understanding of the genes affected by specific exposures and the consequence of alterations in these genes or their products, which in turn will require an understanding of the pathways critical in development. The ligand Sonic hedgehog, the receptors Patched and Smoothened, and the GLI family of transcription factors represent one such pathway. This pathway illustrates several operating principles important in the consideration of developmental consequences of environmental exposures to toxins.  (+info)

RNA sorting in Drosophila oocytes and embryos. (39/15687)

Many RNAs involved in determination of the oocyte, specification of embryonic axes, and establishment of germ cells in Drosophila are localized asymmetrically within the developing egg or syncytial embryo. Here I review the current state of knowledge about the cis-acting sequences involved in RNA targeting, RNA binding proteins; gene activities implicated in localizing specific RNAs, and the role of the tubulin and actin cytoskeletons in RNA sorting within the oocyte. Targeted RNAs are often under complex translational control, and the translational control of two RNAs that localize to the posterior of the oocyte, oskar and nanos, is also discussed. Prospects for filling gaps in our knowledge about the mechanisms of localizing RNAs and the importance of RNA sorting in regulating gene expression are also explored.  (+info)

A novel follicle-cell-dependent dominant female sterile allele, StarKojak, alters receptor tyrosine kinase signaling in Drosophila. (40/15687)

We describe a new dominant allele, StarKojak, that alters receptor tyrosine kinase signaling in the follicle cells and in the eyes in Drosophila. We isolated StarKojak in a screen for follicle-cell-dependent dominant female sterile mutations. We show that StarKojak and revertants of StarKojak do not complement Star loss-of-function mutations. We propose that StarKojak is a novel type of allele of Star that has both dominant gain-of-function phenotypes early in development and dominant loss-of-function phenotypes later in development. Star encodes a putative transmembrane protein that has previously been shown to be a critical component of the epidermal growth factor receptor tyrosine kinase signaling pathway. Early in oogenesis, Star mRNA expression is higher in StarKojak egg chambers than in wild-type egg chambers, consistent with its gain-of-function phenotype. Later in oogenesis, Star mRNA expression is lower in StarKojak follicle cells than in wild-type follicle cells, consistent with its loss-of-function phenotype. By genetically analyzing StarKojak and its revertants, we present evidence that Star is involved in anterior-posterior axis formation both in the female germline cells and in the somatic follicle cells. We also demonstrate that at least part of the dominant female sterile phenotype of StarKojak is restricted to the posterior-pole follicle cells. We propose that Star functions by processing pro-Gurken to mature Gurken, which is thereby released in the region between the oocyte and the follicle cells and binds to the epidermal growth factor receptor in the follicle cells.  (+info)