High sequence turnover in the regulatory regions of the developmental gene hunchback in insects. (25/15687)

Extensive sequence analysis of the developmental gene hunchback and its 5' and 3' regulatory regions in Drosophila melanogaster, Drosophila virilis, Musca domestica, and Tribolium castaneum, using a variety of computer algorithms, reveals regions of high sequence simplicity probably generated by slippage-like mechanisms of turnover. No regions are entirely refractory to the action of slippage, although the density and composition of simple sequence motifs varies from region to region. Interestingly, the 5' and 3' flanking regions share short repetitive motifs despite their separation by the gene itself, and the motifs are different in composition from those in the exons and introns. Furthermore, there are high levels of conservation of motifs in equivalent orthologous regions. Detailed sequence analysis of the P2 promoter and DNA footprinting assays reveal that the number, orientation, sequence, spacing, and protein-binding affinities of the BICOID-binding sites varies between species and that the 'P2' promoter, the nanos response element in the 3' untranslated region, and several conserved boxes of sequence in the gene (e.g., the two zinc-finger regions) are surrounded by cryptically-simple-sequence DNA. We argue that high sequence turnover and genetic redundancy permit both the general maintenance of promoter functions through the establishment of coevolutionary (compensatory) changes in cis- and trans-acting genetic elements and, at the same time, the possibility of subtle changes in the regulation of hunchback in the different species.  (+info)

A glial-neuronal signaling pathway revealed by mutations in a neurexin-related protein. (26/15687)

In the nervous system, glial cells greatly outnumber neurons but the full extent of their role in determining neural activity remains unknown. Here the axotactin (axo) gene of Drosophila was shown to encode a member of the neurexin protein superfamily secreted by glia and subsequently localized to axonal tracts. Null mutations of axo caused temperature-sensitive paralysis and a corresponding blockade of axonal conduction. Thus, the AXO protein appears to be a component of a glial-neuronal signaling mechanism that helps to determine the membrane electrical properties of target axons.  (+info)

The Drosophila modifier of variegation modulo gene product binds specific RNA sequences at the nucleolus and interacts with DNA and chromatin in a phosphorylation-dependent manner. (27/15687)

modulo belongs to the modifier of Position Effect Variegation class of Drosophila genes, suggesting a role for its product in regulating chromatin structure. Genetics assigned a second function to the gene, in protein synthesis capacity. Bifunctionality is consistent with protein localization in two distinct subnuclear compartments, chromatin and nucleolus, and with its organization in modules potentially involved in DNA and RNA binding. In this study, we examine nucleic acid interactions established by Modulo at nucleolus and chromatin and the mechanism that controls the distribution and balances the function of the protein in the two compartments. Structure/function analysis and oligomer selection/amplification experiments indicate that, in vitro, two basic terminal domains independently contact DNA without sequence specificity, whereas a central RNA Recognition Motif (RRM)-containing domain allows recognition of a novel sequence-/motif-specific RNA class. Phosphorylation moreover is shown to down-regulate DNA binding. Evidence is provided that in vivo nucleolar Modulo is highly phosphorylated and belongs to a ribonucleoprotein particle, whereas chromatin-associated protein is not modified. A functional scheme is finally proposed in which modification by phosphorylation modulates Mod subnuclear distribution and balances its function at the nucleolus and chromatin.  (+info)

Altered cytochrome c display precedes apoptotic cell death in Drosophila. (28/15687)

Drosophila affords a genetically well-defined system to study apoptosis in vivo. It offers a powerful extension to in vitro models that have implicated a requirement for cytochrome c in caspase activation and apoptosis. We found that an overt alteration in cytochrome c anticipates programmed cell death (PCD) in Drosophila tissues, occurring at a time that considerably precedes other known indicators of apoptosis. The altered configuration is manifested by display of an otherwise hidden epitope and occurs without release of the protein into the cytosol. Conditional expression of the Drosophila death activators, reaper or grim, provoked apoptogenic cytochrome c display and, surprisingly, caspase activity was necessary and sufficient to induce this alteration. In cell-free studies, cytosolic caspase activation was triggered by mitochondria from apoptotic cells but identical preparations from healthy cells were inactive. Our observations provide compelling validation of an early role for altered cytochrome c in PCD and suggest propagation of apoptotic physiology through reciprocal, feed-forward amplification involving cytochrome c and caspases.  (+info)

Characterization of two related Drosophila gamma-tubulin complexes that differ in their ability to nucleate microtubules. (29/15687)

gamma-tubulin exists in two related complexes in Drosophila embryo extracts (Moritz, M., Y. Zheng, B.M. Alberts, and K. Oegema. 1998. J. Cell Biol. 142:1- 12). Here, we report the purification and characterization of both complexes that we name gamma-tubulin small complex (gammaTuSC; approximately 280,000 D) and Drosophila gammaTuRC ( approximately 2,200,000 D). In addition to gamma-tubulin, the gammaTuSC contains Dgrip84 and Dgrip91, two proteins homologous to the Spc97/98p protein family. The gammaTuSC is a structural subunit of the gammaTuRC, a larger complex containing about six additional polypeptides. Like the gammaTuRC isolated from Xenopus egg extracts (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578-583), the Drosophila gammaTuRC can nucleate microtubules in vitro and has an open ring structure with a diameter of 25 nm. Cryo-electron microscopy reveals a modular structure with approximately 13 radially arranged structural repeats. The gammaTuSC also nucleates microtubules, but much less efficiently than the gammaTuRC, suggesting that assembly into a larger complex enhances nucleating activity. Analysis of the nucleotide content of the gammaTuSC reveals that gamma-tubulin binds preferentially to GDP over GTP, rendering gamma-tubulin an unusual member of the tubulin superfamily.  (+info)

Aging-specific expression of Drosophila hsp22. (30/15687)

hsp22 is among the least abundantly expressed Drosophila heat shock (hs) genes during both development and heat stress. In contrast, hsp22 was found to be the most abundantly expressed hs gene during Drosophila aging. During aging, hsp22 RNA was induced 60-fold in the head, with somewhat lower level induction in abdomen and thorax. Induction of the other hs gene RNAs was 150-fold, with particularly abundant expression in eye tissue. Aging-specific induction of hsp22 was reproduced by hsp22:lacZ fusion reporter constructs in transgenic flies. Analysis of specific promoter mutations in transgenic flies indicated that functional heat shock response elements are required for hsp22 induction during aging. Finally, comparison of hsp22 RNA and protein expression patterns suggests that aging-specific expression of hsp22 is regulated at both the transcriptional and the posttranscriptional levels. Aging-specific induction of hsp22 is discussed with regard to current evolutionary theories of aging.  (+info)

Telomere loss in somatic cells of Drosophila causes cell cycle arrest and apoptosis. (31/15687)

Checkpoint mechanisms that respond to DNA damage in the mitotic cell cycle are necessary to maintain the fidelity of chromosome transmission. These mechanisms must be able to distinguish the normal telomeres of linear chromosomes from double-strand break damage. However, on several occasions, Drosophila chromosomes that lack their normal telomeric DNA have been recovered, raising the issue of whether Drosophila is able to distinguish telomeric termini from nontelomeric breaks. We used site-specific recombination on a dispensable chromosome to induce the formation of a dicentric chromosome and an acentric, telomere-bearing, chromosome fragment in somatic cells of Drosophila melanogaster. The acentric fragment is lost when cells divide and the dicentric breaks, transmitting a chromosome that has lost a telomere to each daughter cell. In the eye imaginal disc, cells with a newly broken chromosome initially experience mitotic arrest and then undergo apoptosis when cells are induced to divide as the eye differentiates. Therefore, Drosophila cells can detect and respond to a single broken chromosome. It follows that transmissible chromosomes lacking normal telomeric DNA nonetheless must possess functional telomeres. We conclude that Drosophila telomeres can be established and maintained by a mechanism that does not rely on the terminal DNA sequence.  (+info)

Isolation and partial characterization of Drosophila myoblasts from primary cultures of embryonic cells. (32/15687)

We describe a method for preparing highly enriched cultures of Drosophila myoblasts from a heterogeneous cell population derived from gastrulating embryos. Enriched cultures are prepared by plating this heterogeneous population of cells in medium from which much of the free calcium is chelated by ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA). Adhesion of myoblasts to tissue culture plastic is better than that of other cell types when plated in this medium. Data concerning cell identity, timing of S phase, and fusion kinetics document the degree of enrichment for myogenic cells and illustrate their synchronous differentiation in vitro.  (+info)