Association of antibiotic treatment-resistant Lyme arthritis with T cell responses to dominant epitopes of outer surface protein A of Borrelia burgdorferi. (41/1810)

OBJECTIVE: To explore further the association of antibiotic treatment-resistant Lyme arthritis and T cell reactivity with outer surface protein A (OspA) of Borrelia burgdorferi, including the identification of T cell epitopes associated with this treatment-resistant course. METHODS: The responses of peripheral blood and, if available, synovial fluid lymphocytes to B burgdorferi proteins, fragments, and synthetic peptides, as determined by proliferation assay and interferon-gamma production, were compared in 16 patients with treatment-responsive and 16 with treatment-resistant Lyme arthritis. RESULTS: The maximum severity of joint swelling correlated directly with the response to OspA. Moreover, the only significant difference between patients with treatment-resistant and treatment-responsive arthritis was in reactivity with N-terminal and C-terminal fragments of OspA, OspA1 (amino acids [aa] 16-106), and OspA3 (aa 168-273). Epitope mapping showed that 14 of the 16 patients with treatment-resistant arthritis had responses to OspA peptides (usually 4 or 5 epitopes), whereas only 5 of the 16 patients with treatment-responsive arthritis had reactivity with these peptides (usually 1 or 2 epitopes) (P = 0.003). Patients with HLA-DRB1 alleles associated with treatment-resistant arthritis were more likely to react with peptide 15 (aa 154-173) and, to a lesser degree, with peptide 21 (aa 214-233) than patients with other alleles, whereas the responses to other epitopes were similar in both groups. CONCLUSION: The maximum severity of joint swelling and the duration of Lyme arthritis after antibiotic treatment are associated with T cell responses to specific epitopes of OspA.  (+info)

Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson's disease. (42/1810)

Developments of technologies for delivery of foreign genes to the central nervous system are opening the field to promising treatments for human neurodegenerative diseases. Gene delivery vectors need to fulfill several criteria of efficacy and safety before being applied to humans. The ability to drive expression of a therapeutic gene in an adequate number of cells, to maintain long-term expression, and to allow exogenous control over the transgene product are essential requirements for clinical application. We describe the use of an adenovirus vector encoding human tyrosine hydroxylase (TH) 1 under the negative control of the tetracycline-sensitive gene regulatory system for direct injection into the dopamine-depleted striatum of a rat model of Parkinson's disease. This vector mediated synthesis of TH in numerous striatal cells and transgene expression was observed in a large proportion of them for at least 17 weeks. Furthermore, doxycyline, a tetracycline analog, allowed efficient and reversible control of transgene expression. Thus, the insertion of a tetracycline-sensitive regulatory cassette into a single adenovirus vector provides a promising system for the development of successful and safe therapies for human neurological diseases. Our results also confirm that future effective gene replacement approaches to Parkinson's disease will have to consider the concomitant transfer of TH and GTP-cyclohydrolase transgenes because the synthesis of the TH cofactor tetrahydrobiopterin may be crucial for restoration of the dopaminergic deficit.  (+info)

Post-transcriptional regulation of the arginine transporter Cat-1 by amino acid availability. (43/1810)

The regulation of the high affinity cationic amino acid transporter (Cat-1) by amino acid availability has been studied. In C6 glioma and NRK kidney cells, cat-1 mRNA levels increased 3.8-18-fold following 2 h of amino acid starvation. The transcription rate of the cat-1 gene remained unchanged during amino acid starvation, suggesting a post-transcriptional mechanism of regulation. This mechanism was investigated by expressing a cat-1 mRNA from a tetracycline-regulated promoter. The cat-1 mRNA contained 1.9 kilobase pairs (kb) of coding sequence, 4.5 kb of 3'-untranslated region, and 80 base pairs of 5'-untranslated region. The full-length (7.9 kb) mRNA increased 5-fold in amino acid-depleted cells. However, a 3.4-kb species that results from the usage of an alternative polyadenylation site was not induced, suggesting that the cat-1 mRNA was stabilized by cis-acting RNA sequences within the 3'-UTR. Transcription and protein synthesis were required for the increase in full-length cat-1 mRNA level. Because omission of amino acids from the cell culture medium leads to a substantial decrease in protein synthesis, the translation of the increased cat-1 mRNA was assessed in amino acid-depleted cells. Western blot analysis demonstrated that cat-1 mRNA and protein levels changed in parallel. The increase in protein level was significantly lower than the increase in mRNA level, supporting the conclusion that cat-1 mRNA is inefficiently translated when the supply of amino acids is limited, relative to amino acid-fed cells. Finally, y(+)-mediated transport of arginine in amino acid-fed and -starved cells paralleled Cat-1 protein levels. We conclude that the cat-1 gene is subject to adaptive regulation by amino acid availability. Amino acid depletion initiates molecular events that lead to increased cat-1 mRNA stability. This causes an increase in Cat-1 protein, and y(+) transport once amino acids become available.  (+info)

Smad7 differentially regulates transforming growth factor beta-mediated signaling pathways. (44/1810)

Smad7 has been identified as a negative regulator of transforming growth factor beta (TGF-beta) signaling by interfering with the phosphorylation of other Smad proteins by TGF-beta receptor type I (TbetaRI). We established a mink lung epithelial (Mv1Lu) cell line where ectopic expression of Smad7 is tightly controlled by doxycycline using an improved Tet-on system. Once induced by doxycycline, the recombinant Smad7 was localized predominantly in the perinuclear region and in the cytoplasm. However, the type of culture surface alters the subcellular localization of Smad7: on plastic or on fibronectin-coated glass, Smad7 was localized in the cytoplasm; but when the cells were cultured on glass, nuclear localization was observed. TGF-beta stimulation did not alter substantially the cellular distribution of Smad7. Importantly, the expression of recombinant Smad7 differentially inhibited TGF-beta signaling pathways. Consistent with previous studies, Smad7 inhibited TGF-beta-stimulated induction of type 1 plasminogen activator inhibitor as measured by p3TP-Lux reporter. However, expression of Smad7 had little effect on TGF-beta-induced growth inhibition.  (+info)

Azithromycin activities against Orientia tsutsugamushi strains isolated in cases of scrub typhus in Northern Thailand. (45/1810)

Azithromycin was given to mice and humans infected with strains of Orientia tsutsugamushi from northern Thailand, where drug-resistant scrub typhus occurs. Azithromycin and doxycycline yielded comparable mouse survival rates (73 and 79%, respectively; P > 0.5). Symptoms, signs, and fever in two pregnant women abated rapidly with azithromycin. Prospective human trials are needed.  (+info)

Antibiotics modulate vaccine-induced humoral immune response. (46/1810)

The effects of antibiotics on the antigen-specific humoral immune response are not known. Macrolides, tetracyclines, and beta-lactams are commonly prescribed antibiotics. The first two are known to have immunomodulatory activities. The effects of clarithromycin, doxycycline, and ampicillin on the primary and secondary antibody responses to tetanus toxoid, a pneumococcal polysaccharide vaccine, a hepatitis B virus surface antigen (HBsAg) vaccine, and live attenuated Salmonella typhi (Ty21a) were investigated using a mouse model. For the mice receiving the tetanus toxoid, the immunoglobulin M (IgM) level of the clarithromycin group at day 7 was significantly lower than the corresponding antibody level of the normal saline (NS) group. For the mice receiving the pneumococcal polysaccharide vaccine, the total antibody and IgM levels of the clarithromycin group and the IgM level of the doxycycline group at day 7 were significantly lower than the corresponding antibody levels of the ampicillin and NS groups. For the mice receiving the HBsAg vaccine, the IgM level of the doxycycline group at day 7 was significantly lower than the corresponding antibody levels of the clarithromycin and NS groups, while the IgM level of the clarithromycin group at day 28 was significantly lower than the corresponding antibody levels of the doxycycline, ampicillin, and NS groups. For the mice receiving all three vaccines, there were no statistically significant differences between any of the antibody levels of the ampicillin group and the corresponding antibody levels of the NS group. For the mice receiving Ty21a, the total antibody levels of the ampicillin group at days 7 and 21 were significantly higher than the corresponding antibody levels of the NS group. Moreover, the IgM levels of the clarithromycin, doxycycline, and ampicillin groups at days 7 and 21 were significantly higher than the corresponding antibody levels of the NS group. Furthermore, the total antibody level of the ampicillin group at day 21 was significantly higher than the corresponding antibody level of the doxycycline group. For all four vaccines, there were no statistically significant differences among the serum levels of interleukin-10 and gamma interferon for the mice treated with the various antibiotics. We conclude that clarithromycin and doxycycline, but not ampicillin, suppress the antibody responses of mice to T-cell-dependent and T-cell-independent antigens, whereas all three antibiotics enhance the antibody response to live attenuated mucosal bacterial vaccines.  (+info)

Detection of borreliacidal antibodies in Lyme borreliosis patient sera containing antimicrobial agents. (47/1810)

The borreliacidal-antibody test has been used for the serological detection and confirmation of Lyme borreliosis. However, the presence of antimicrobial agents in serum can confound the accurate detection of borreliacidal antibodies. In this study, we developed a Bacillus subtilis agar diffusion bioassay to detect small concentrations of antimicrobial agents in serum. We also used XAD-16, a nonionic polymeric resin, to adsorb and remove high concentrations of amoxicillin, cefotaxime, ceftriaxone, cefuroxime, doxycycline, and erythromycin without significantly affecting even small concentrations of immunoglobulin M (IgM) or IgG borreliacidal antibodies. High concentrations of penicillin could also be removed by adding 1 U of penicillinase without significantly influencing the levels of borreliacidal antibodies. These simple procedures greatly enhance the clinical utility of the borreliacidal-antibody test.  (+info)

Overexpression of the hereditary hemochromatosis protein, HFE, in HeLa cells induces and iron-deficient phenotype. (48/1810)

A transfectant HeLa cell clone expressing HFE under the control of a tetracycline-repressible promoter was generated. HFE expression was fully repressed by the presence of doxycycline, while it was strongly induced by growth in the absence of doxycycline. HFE accumulation was accompanied by a large (approximately 10-fold) decrease in H- and L-ferritin levels, by a approximately 3-4-fold increase in transferrin receptor, and a approximately 2-fold increase in iron regulatory protein activity. These indices of cellular iron deficiency were reversed by iron supplementation complexes. The overexpressed HFE immunoprecipitated together with transferrin receptor, indicating a physical association which is the likely cause for the observed approximately 30% decrease in 55Fe-transferrin incorporation after 18 h incubation. In the HFE-expressing cells the reduction in transferrin-mediated iron incorporation was partially compensated by a approximately 30% increase in non-transferrin iron incorporation from 55Fe-NTA, evident after prolonged, 18 h, incubations. The findings indicate that HFE binding to transferrin receptor reduces cellular iron availability and regulates the balance between transferrin-mediated and non-transferrin-mediated cellular iron incorporation.  (+info)