Down-regulation of the expression of PKC1 and SRB1/PSA1/VIG9, two genes involved in cell wall integrity in Saccharomyces cerevisiae, causes flocculation. (41/25249)

The cell wall integrity determinants PKC1 and SRB1/PSA1/VIG9 of Saccharomyces cerevisiae were expressed under the control of the tightly regulated promoter pMET3. Substitution of the cell-cycle-regulated SRB1/PSA1 native promoter with pMET3 led to faster cell growth, larger cell volumes, and a twofold reduction of the steady-state SRB1/PSA1 mRNA level. In addition, the new pattern of expression of SRB1/PSA1 resulted in a dominant flocculation phenotype at all phases of batch growth. By contrast, expression of PKC1 from pMET3 increased the flocculation capacity of cells only at stationary phase. Methionine-mediated repression of either PSA1/SRB1 or PKC1 resulted in enhanced cell clumping. Cells in which both these genes had been replaced with their respective pMET3-regulated cassettes were highly flocculent under both expression and repression conditions. These results suggest that greater exposure of flocculin on the cell surface, caused by either cell wall distortion (through depletion of Pkc1p) or aberrant regulation of mannosylation (through constitutive production of Srb1p), results in an increased flocculation ability.  (+info)

Essential roles of retinoic acid signaling in interdigital apoptosis and control of BMP-7 expression in mouse autopods. (42/25249)

We previously reported that mice lacking the RARgamma gene and one or both alleles of the RARbeta gene (i.e., RARbeta+/-/RARgamma-/- and RARbeta-/-/RARgamma-/- mutants) display a severe and fully penetrant interdigital webbing (soft tissue syndactyly), caused by the persistence of the fetal interdigital mesenchyme (Ghyselinck et al., 1997, Int. J. Dev. Biol. 41, 425-447). In the present study, these compound mutants were used to investigate the cellular and molecular mechanisms involved in retinoic acid (RA)-dependent formation of the interdigital necrotic zones (INZs). The mutant INZs show a marked decrease in the number of apoptotic cells accompanied by an increase of cell proliferation. This marked decrease was not paralleled by a reduction of the number of macrophages, indicating that the chemotactic cues which normally attract these cells into the INZs were not affected. The expression of a number of genes known to be involved in the establishment of the INZs, the patterning of the autopod, and/or the initiation of apoptosis was also unaffected. These genes included BMP-2, BMP-4, Msx-1, Msx-2, 5' members of Hox complexes, Bcl2, Bax, and p53. In contrast, the mutant INZs displayed a specific, graded, down-regulation of tissue transglutaminase (tTG) promoter activity and of stromelysin-3 expression upon the removal of one or both alleles of the RARbeta gene from the RARgamma null genetic background. As retinoic acid response elements are present in the promoter regions of both tTG and stromelysin-3 genes, we propose that RA might increase the amount of cell death in the INZs through a direct modulation of tTG expression and that it also contributes to the process of tissue remodeling, which accompanies cell death, through an up-regulation of stromelysin-3 expression in the INZs. Approximately 10% of the RARbeta-/- /RARgamma-/- mutants displayed a supernumerary preaxial digit on hindfeet, which is also a feature of the BMP-7 null phenotype (Dudley et al., 1995, Genes Dev. 9, 2795-2807; Luo et al., 1995, Genes Dev. 9, 2808-2820). BMP-7 was globally down-regulated at an early stage in the autopods of these RAR double null mutants, prior to the appearance of the digital rays. Therefore, RA may exert some of its effects on anteroposterior autopod patterning through controlling BMP-7 expression.  (+info)

Cycloheximide and 4-OH-TEMPO suppress chloramphenicol-induced apoptosis in RL-34 cells via the suppression of the formation of megamitochondria. (43/25249)

Toxic effects of chloramphenicol, an antibiotic inhibitor of mitochondrial protein synthesis, on rat liver derived RL-34 cell line were completely blocked by a combined treatment with substances endowed with direct or indirect antioxidant properties. A stable, nitroxide free radical scavenger, 4-hydroxy-2,2,6, 6-tetramethylpiperidine-1-oxyl, and a protein synthesis inhibitor, cycloheximide, suppressed in a similar manner the following manifestations of the chloramphenicol cytotoxicity: (1) Oxidative stress state as evidenced by FACS analysis of cells loaded with carboxy-dichlorodihydrofluorescein diacetate and Mito Tracker CMTH2MRos; (2) megamitochondria formation detected by staining of mitochondria with MitoTracker CMXRos under a laser confocal microscopy and electron microscopy; (3) apoptotic changes of the cell detected by the phase contrast microscopy, DNA laddering analysis and cell cycle analysis. Since increases of ROS generation in chloramphenicol-treated cells were the first sign of the chloramphenicol toxicity, we assume that oxidative stress state is a mediator of above described alternations of RL-34 cells including MG formation. Pretreatment of cells with cycloheximide or 4-hydroxy-2,2, 6,6-tetramethylpiperidine-1-oxyl, which is known to be localized into mitochondria, inhibited the megamitochondria formation and succeeding apoptotic changes of the cell. Protective effects of cycloheximide, which enhances the expression of Bcl-2 protein, may further confirm our hypothesis that the megamitochondria formation is a cellular response to an increased ROS generation and raise a possibility that antiapoptotic action of the drug is exerted via the protection of the mitochondria functions.  (+info)

Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. (44/25249)

Activation of leukocytes by proinflammatory stimuli selectively initiates intracellular signal transduction via sequential phosphorylation of kinases. Lipopolysaccharide (LPS) stimulation of human neutrophils is known to result in activation of p38 mitogen-activated protein kinase (MAPk); however, the upstream activator(s) of p38 MAPk is unknown, and consequences of p38 MAPk activation remain largely undefined. We investigated the MAPk kinase (MKK) that activates p38 MAPk in response to LPS, the p38 MAPk isoforms that are activated as part of this pathway, and the functional responses affected by p38 MAPk activation. Although MKK3, MKK4, and MKK6 all activated p38 MAPk in experimental models, only MKK3 was found to activate recombinant p38 MAPk in LPS-treated neutrophils. Of p38 MAPk isoforms studied, only p38alpha and p38delta were detected in neutrophils. LPS stimulation selectively activated p38alpha. Specific inhibitors of p38alpha MAPk blocked LPS-induced adhesion, nuclear factor-kappa B (NF-kappaB) activation, and synthesis of tumor necrosis factor-alpha (TNF-alpha). Inhibition of p38alpha MAPk resulted in a transient decrease in TNF-alpha mRNA accumulation but persistent loss of TNF-alpha synthesis. These findings support a pathway by which LPS stimulation of neutrophils results in activation of MKK3, which in turn activates p38alpha MAPk, ultimately regulating adhesion, NF-kappaB activation, enhanced gene expression of TNF-alpha, and regulation of TNF-alpha synthesis.  (+info)

Erythropoietin depresses nitric oxide synthase expression by human endothelial cells. (45/25249)

We have recently shown that erythropoietin (EPO)-induced hypertension is unrelated to the rise in hematocrit and is marked by elevated cytosolic [Ca+2] and nitric oxide (NO) resistance. The present study was done to determine the effect of EPO on NO production and endothelial NO synthase (eNOS) expression by endothelial cells. Human coronary artery endothelial cells were cultured to subconfluence and then were incubated for 24 hours in the presence of either EPO (0, 5, and 20 U/mL) alone or EPO plus the calcium channel blocker felodipine. The experiments were carried out with quiescent (0.5% FCS) and proliferating (5% FCS) cells. Total nitrate and nitrite, eNOS protein, DNA synthesis (thymidine incorporation), and cell proliferation (cell count) were determined. In addition, NO production in response to acetylcholine stimulation was tested. EPO resulted in a dose-dependent inhibition of basal and acetylcholine-stimulated NO production and eNOS protein expression and also led to a significant dose-dependent stimulation of DNA synthesis in endothelial cells. The inhibitory effects of EPO on NO production and eNOS expression were reversed by felodipine. Thus, EPO downregulates basal and acetylcholine-stimulated NO production, depresses eNOS expression, and stimulates proliferation in isolated human endothelial cells. The suppressive effects of EPO on NO production and on eNOS expression are reversed by calcium channel blockade.  (+info)

p70(S6K) controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis. (46/25249)

In mammalian cells, p70(S6K) plays a key role in translational control of cell proliferation in response to growth factors. Because of the reliance on translational control in early vertebrate development, we cloned a Xenopus homolog of p70(S6K) and investigated the activity profile of p70(S6K) during Xenopus oocyte maturation and early embryogenesis. p70(S6K) activity is high in resting oocytes and decreases to background levels upon stimulation of maturation with progesterone. During embryonic development, three peaks of activity were observed: immediately after fertilization, shortly before the midblastula transition, and during gastrulation. Rapamycin, an inhibitor of p70(S6K) activation, caused oocytes to undergo germinal vesicle breakdown earlier than control oocytes, and sensitivity to progesterone was increased. Injection of a rapamycin-insensitive, constitutively active mutant of p70(S6K) reversed the effects of rapamycin. However, increases in S6 phosphorylation were not significantly affected by rapamycin during maturation. mos mRNA, which does not contain a 5'-terminal oligopyrimidine tract (5'-TOP), was translated earlier, and a larger amount of Mos protein was produced in rapamycin-treated oocytes. In fertilized eggs rapamycin treatment increased the translation of the Cdc25A phosphatase, which lacks a 5'-TOP. Translation assays in vivo using both DNA and RNA reporter constructs with the 5'-TOP from elongation factor 2 showed decreased translational activity with rapamycin, whereas constructs without a 5'-TOP or with an internal ribosome entry site were translated more efficiently upon rapamycin treatment. These results suggest that changes in p70(S6K) activity during oocyte maturation and early embryogenesis selectively alter the translational capacity available for mRNAs lacking a 5'-TOP region.  (+info)

Interferon regulatory factor 2 represses the Epstein-Barr virus BamHI Q latency promoter in type III latency. (47/25249)

Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is the essential protein for maintenance of the EBV episome and establishment of latency. The BamHI Q promoter (Qp) is used for the transcription of EBNA-1 mRNA in type I and type II latency, which are EBV infection states exemplified by Burkitt's lymphoma and nasopharyngeal carcinoma. However, Qp is inactive in type III latency, and other promoters (the BamHI C promoter and/or the BamHI W promoter) are used for EBNA-1. The involvement of interferon regulatory factors (IRFs) in the regulation of Qp is suggested by the presence of an essential interferon-stimulated response element (ISRE) in the promoter. In this work, expression of IRF-2 is shown to be inversely associated with Qp status, i.e., IRF-2 levels are high in type III latency (when Qp is inactive) and low in type I latency (when Qp is active). Also, IRF-2 is identified by electrophoretic mobility shift assay as the major protein binding to the Qp ISRE in type III latency. In transient transfection assays, IRF-2 represses the activity of Qp-reporter constructs. Overexpression of IRF-2 in a type I latency cell line did not activate the endogenous Qp but marginally reduced the EBNA-1 mRNA level. Switching from type III latency (Qp inactive) to type II latency (Qp active), as produced by cell fusion, is directly associated with greatly reduced expression of IRF-2. These data strongly suggest that IRF-2 is a negative regulator of Qp and may contribute to the silencing of Qp in type III latency.  (+info)

ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. (48/25249)

ErbB-2/HER2 is an important signaling partner for the epidermal growth factor receptor (EGFR). Overexpression of erbB-2 is also associated with poor prognosis in breast cancer. To investigate how erbB-2 amplification affects its interactions with the EGFR, we used a human mammary epithelial cell system in which erbB-2 expression was increased 7-20-fold by gene transfection. We found that amplification of erbB-2 caused constitutive activation of erbB-2 as well as ligand-independent activation of the EGFR. Overexpression of erbB-2 strongly inhibited erbB-2 down-regulation following transactivation by EGFR. Significantly, down-regulation of activated EGFR was also inhibited by erbB-2 amplification, resulting in enhanced ligand-dependent activation of the EGFR. The rate of EGFR endocytosis was not affected by erbB-2 overexpression, but the rate of lysosomal targeting was significantly reduced. In addition, erbB-2 overexpression promoted rapid recycling of activated EGFR back to the cell surface and decreased ligand dissociation from the EGFR. Our data suggest that overexpression of erbB-2 inhibits both its down-regulation and that of the EGFR. The net effect is increased signaling through the EGFR system.  (+info)