Loading...
(1/8940) Long-term effects of N-2-chlorethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurones in the rat brain and heart.

1 N-2-Chlorethyl-N-ethyl-2-bromobenzylamine hydrochloride (DSP 4) 50 mg/kg intraperitoneally, produced a long-term decrease in the capacity of brain homogenates to accumulate noradrenaline with significant effect 8 months after the injection. It had no effect on the noradrenaline uptake in homogenates from the striatum (dopamine neurones) and on the uptake of 5-hydroxytryptamine (5-HT) in various brain regions. 2 In vitro DSP 4 inhibited the noradrenaline uptake in a cortical homogenate with an IC50 value of 2 muM but was more than ten times less active on the dopamine uptake in a striatal homogenate and the 5-HT uptake in a cortical homogenate. 3 DSP 4 (50 mg/kg i.p.) inhibited the uptake of noradrenaline in the rat heart atrium in vitro but this action was terminated within 2 weeks. 4 DSP 4 (50 mg/kg i.p.) cuased a decrease in the dopamine-beta-hydroxylase (DBH) activity in the rat brain and heart. The onset of this effect was slow; in heart a lag period of 2-4 days was noted. In brain the DBH-activity in cerebral cortex was much more decreased than that in hypothalamus which was only slightly affected. A significant effect was still found 8 months after the injection. The noradrenaline concentration in the brain was greatly decreased for at least two weeks, whereas noradrenaline in heart was only temporarily reduced. 5 The long-term effects of DSP 4 on the noradrenaline accumulation, the DBH activity and noradrenaline concentration in the rat brain were antagonized by desipramine (10 mg/kg i.p.). 6 It is suggested that DSP 4 primarily attacks the membranal noradrenaline uptake sites forming a covalent bond and that the nerve terminals, as a result of this binding, degenerate.  (+info)

(2/8940) Studies on the mechanism of action of amantadine.

1 The effect of amantadine hydrochloride on various aspects of catecholamine metabolism in the rat brain has been investigated. 2 Amantadine failed to have any significant effect on brain concentrations of dopamine or noradrenaline even when administered daily for 9 days. 3 Amantadine had no effect on the rate of decline of noradrenaline and dopamine concentrations after alpha-methyl-p-tyrosine. 4 In vitro amantadine inhibited dopamine uptake into synaptosomes only at high concentrations, and caused little release of dopamine from synaptosomes. 5 There is no evidence from these results to suggest that the anti-Parkinsonian effect of amantadine is related to an action on dopaminergic mechanisms.  (+info)

(3/8940) Dopamine stimulates salivary duct cells in the cockroach Periplaneta americana.

This study examines whether the salivary duct cells of the cockroach Periplaneta americana can be stimulated by the neurotransmitters dopamine and serotonin. We have carried out digital Ca2+-imaging experiments using the Ca2+-sensitive dye fura-2 and conventional intracellular recordings from isolated salivary glands. Dopamine evokes a slow, almost tonic, and reversible dose-dependent elevation in [Ca2+]i in the duct cells. Upon stimulation with 10(-)6 mol l-1 dopamine, [Ca2+]i rises from 48+/-4 nmol l-1 to 311+/-43 nmol l-1 (mean +/- s.e.m., N=18) within 200-300 s. The dopamine-induced elevation in [Ca2+]i is absent in Ca2+-free saline and is blocked by 10(-)4 mol l-1 La3+, indicating that dopamine induces an influx of Ca2+ across the basolateral membrane of the duct cells. Stimulation with 10(-)6 mol l-1 dopamine causes the basolateral membrane to depolarize from -67+/-1 to -41+/-2 mV (N=10). This depolarization is also blocked by La3+ and is abolished when Na+ in the bath solution is reduced to 10 mmol l-1. Serotonin affects neither [Ca2+]i nor the basolateral membrane potential of the duct cells. These data indicate that the neurotransmitter dopamine, which has previously been shown to stimulate fluid secretion from the glands, also stimulates the salivary duct cells, suggesting that dopamine controls their most probable function, the modification of primary saliva.  (+info)

(4/8940) Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons.

ATP-sensitive potassium (K-ATP) channels couple the metabolic state to cellular excitability in various tissues. Several isoforms of the K-ATP channel subunits, the sulfonylurea receptor (SUR) and inwardly rectifying K channel (Kir6.X), have been cloned, but the molecular composition and functional diversity of native neuronal K-ATP channels remain unresolved. We combined functional analysis of K-ATP channels with expression profiling of K-ATP subunits at the level of single substantia nigra (SN) neurons in mouse brain slices using an RT-multiplex PCR protocol. In contrast to GABAergic neurons, single dopaminergic SN neurons displayed alternative co-expression of either SUR1, SUR2B or both SUR isoforms with Kir6.2. Dopaminergic SN neurons expressed alternative K-ATP channel species distinguished by significant differences in sulfonylurea affinity and metabolic sensitivity. In single dopaminergic SN neurons, co-expression of SUR1 + Kir6.2, but not of SUR2B + Kir6.2, correlated with functional K-ATP channels highly sensitive to metabolic inhibition. In contrast to wild-type, surviving dopaminergic SN neurons of homozygous weaver mouse exclusively expressed SUR1 + Kir6.2 during the active period of dopaminergic neurodegeneration. Therefore, alternative expression of K-ATP channel subunits defines the differential response to metabolic stress and constitutes a novel candidate mechanism for the differential vulnerability of dopaminergic neurons in response to respiratory chain dysfunction in Parkinson's disease.  (+info)

(5/8940) Plasticity of first-order sensory synapses: interactions between homosynaptic long-term potentiation and heterosynaptically evoked dopaminergic potentiation.

Persistent potentiations of the chemical and electrotonic components of the eighth nerve (NVIII) EPSP recorded in vivo in the goldfish reticulospinal neuron, the Mauthner cell, can be evoked by afferent tetanization or local dendritic application of an endogenous transmitter, dopamine (3-hydroxytyramine). These modifications are attributable to the activation of distinct intracellular kinase cascades. Although dopamine-evoked potentiation (DEP) is mediated by the cAMP-dependent protein kinase (PKA), tetanization most likely activates a Ca2+-dependent protein kinase via an increased intracellular Ca2+ concentration. We present evidence that the eighth nerve tetanus that induces LTP does not act by triggering dopamine release, because it is evoked in the presence of a broad spectrum of dopamine antagonists. To test for interactions between these pathways, we applied the potentiating paradigms sequentially. When dopamine was applied first, tetanization produced additional potentiation of the mixed synaptic response, but when the sequence was reversed, DEP was occluded, indicating that the synapses potentiated by the two procedures belong to the same or overlapping populations. Experiments were conducted to determine interactions between the underlying regulatory mechanisms and the level of their convergence. Inhibiting PKA does not impede tetanus-induced LTP, and chelating postsynaptic Ca2+ with BAPTA does not block DEP, indicating that the initial steps of the induction processes are independent. Pharmacological and voltage-clamp analyses indicate that the two pathways converge on functional AMPA/kainate receptors for the chemically mediated EPSP and gap junctions for the electrotonic component or at intermediaries common to both pathways. A cellular model incorporating these interactions is proposed on the basis of differential modulation of synaptic responses via receptor-protein phosphorylation.  (+info)

(6/8940) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor.

Nigrostriatal dopaminergic neurons undergo sprouting around the margins of a striatal wound. The mechanism of this periwound sprouting has been unclear. In this study, we have examined the role played by the macrophage and microglial response that follows striatal injury. Macrophages and activated microglia quickly accumulate after injury and reach their greatest numbers in the first week. Subsequently, the number of both cell types declines rapidly in the first month and thereafter more slowly. Macrophage numbers eventually cease to decline, and a sizable group of these cells remains at the wound site and forms a long-term, highly activated resident population. This population of macrophages expresses increasing amounts of glial cell line-derived neurotrophic factor mRNA with time. Brain-derived neurotrophic factor mRNA is also expressed in and around the wound site. Production of this factor is by both activated microglia and, to a lesser extent, macrophages. The production of these potent dopaminergic neurotrophic factors occurs in a similar spatial distribution to sprouting dopaminergic fibers. Moreover, dopamine transporter-positive dopaminergic neurites can be seen growing toward and embracing hemosiderin-filled wound macrophages. The dopaminergic sprouting that accompanies striatal injury thus appears to result from neurotrophic factor secretion by activated macrophages and microglia at the wound site.  (+info)

(7/8940) Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice.

Dopamine-deficient mice (DA-/- ), lacking tyrosine hydroxylase (TH) in dopaminergic neurons, become hypoactive and aphagic and die by 4 weeks of age. They are rescued by daily treatment with L-3,4-dihydroxyphenylalanine (L-DOPA); each dose restores dopamine (DA) and feeding for less than 24 hr. Recombinant adeno-associated viruses expressing human TH or GTP cyclohydrolase 1 (GTPCH1) were injected into the striatum of DA-/- mice. Bilateral coinjection of both viruses restored feeding behavior for several months. However, locomotor activity and coordination were partially improved. A virus expressing only TH was less effective, and one expressing GTPCH1 alone was ineffective. TH immunoreactivity and DA were detected in the ventral striatum and adjacent posterior regions of rescued mice, suggesting that these regions mediate a critical DA-dependent aspect of feeding behavior.  (+info)

(8/8940) (S)-(-)-Cotinine, the major brain metabolite of nicotine, stimulates nicotinic receptors to evoke [3H]dopamine release from rat striatal slices in a calcium-dependent manner.

Cotinine, a major peripheral metabolite of nicotine, has recently been shown to be the most abundant metabolite in rat brain after peripheral nicotine administration. However, little attention has been focused on the contribution of cotinine to the pharmacological effects of nicotine exposure in either animals or humans. The present study determined the concentration-response relationship for (S)-(-)-cotinine-evoked 3H overflow from superfused rat striatal slices preloaded with [3H]dopamine ([3H]DA) and whether this response was mediated by nicotinic receptor stimulation. (S)-(-)-Cotinine (1 microM to 3 mM) evoked 3H overflow from [3H]DA-preloaded rat striatal slices in a concentration-dependent manner with an EC50 value of 30 microM, indicating a lower potency than either (S)-(-)-nicotine or the active nicotine metabolite, (S)-(-)-nornicotine. As reported for (S)-(-)-nicotine and (S)-(-)-nornicotine, desensitization to the effect of (S)-(-)-cotinine was observed. The classic nicotinic receptor antagonists mecamylamine and dihydro-beta-erythroidine inhibited the response to (S)-(-)-cotinine (1-100 microM). Additionally, 3H overflow evoked by (S)-(-)-cotinine (10-1000 microM) was inhibited by superfusion with a low calcium buffer. Interestingly, over the same concentration range, (S)-(-)-cotinine did not inhibit [3H]DA uptake into striatal synaptosomes. These results demonstrate that (S)-(-)-cotinine, a constituent of tobacco products and the major metabolite of nicotine, stimulates nicotinic receptors to evoke the release of DA in a calcium-dependent manner from superfused rat striatal slices. Thus, (S)-(-)-cotinine likely contributes to the neuropharmacological effects of nicotine and tobacco use.  (+info)