Analysis of genomic integrity and p53-dependent G1 checkpoint in telomerase-induced extended-life-span human fibroblasts. (17/66602)

Life span determination in normal human cells may be regulated by nucleoprotein structures called telomeres, the physical ends of eukaryotic chromosomes. Telomeres have been shown to be essential for chromosome stability and function and to shorten with each cell division in normal human cells in culture and with age in vivo. Reversal of telomere shortening by the forced expression of telomerase in normal cells has been shown to elongate telomeres and extend the replicative life span (H. Vaziri and S. Benchimol, Curr. Biol. 8:279-282, 1998; A. G. Bodnar et al., Science 279:349-352, 1998). Extension of the life span as a consequence of the functional inactivation of p53 is frequently associated with loss of genomic stability. Analysis of telomerase-induced extended-life-span fibroblast (TIELF) cells by G banding and spectral karyotyping indicated that forced extension of the life span by telomerase led to the transient formation of aberrant structures, which were subsequently resolved in higher passages. However, the p53-dependent G1 checkpoint was intact as assessed by functional activation of p53 protein in response to ionizing radiation and subsequent p53-mediated induction of p21(Waf1/Cip1/Sdi1). TIELF cells were not tumorigenic and had a normal DNA strand break rejoining activity and normal radiosensitivity in response to ionizing radiation.  (+info)

Isolation of zebrafish gdf7 and comparative genetic mapping of genes belonging to the growth/differentiation factor 5, 6, 7 subgroup of the TGF-beta superfamily. (18/66602)

The Growth/differentiation factor (Gdf) 5, 6, 7 genes form a closely related subgroup belonging to the TGF-beta superfamily. In zebrafish, there are three genes that belong to the Gdf5, 6, 7 subgroup that have been named radar, dynamo, and contact. The genes radar and dynamo both encode proteins most similar to mouse GDF6. The orthologous identity of these genes on the basis of amino acid similarities has not been clear. We have identified gdf7, a fourth zebrafish gene belonging to the Gdf5, 6, 7 subgroup. To assign correct orthologies and to investigate the evolutionary relationships of the human, mouse, and zebrafish Gdf5, 6, 7 subgroup, we have compared genetic map positions of the zebrafish and mammalian genes. We have mapped zebrafish gdf7 to linkage group (LG) 17, contact to LG9, GDF6 to human chromosome (Hsa) 8 and GDF7 to Hsa2p. The radar and dynamo genes have been localized previously to LG16 and LG19, respectively. A comparison of syntenies shared among human, mouse, and zebrafish genomes indicates that gdf7 is the ortholog of mammalian GDF7/Gdf7. LG16 shares syntenic relationships with mouse chromosome (Mmu) 4, including Gdf6. Portions of LG16 and LG19 appear to be duplicate chromosomes, thus suggesting that radar and dynamo are both orthologs of Gdf6. Finally, the mapping data is consistent with contact being the zebrafish ortholog of mammalian GDF5/Gdf5.  (+info)

An effective approach for analyzing "prefinished" genomic sequence data. (19/66602)

Ongoing efforts to sequence the human genome are already generating large amounts of data, with substantial increases anticipated over the next few years. In most cases, a shotgun sequencing strategy is being used, which rapidly yields most of the primary sequence in incompletely assembled sequence contigs ("prefinished" sequence) and more slowly produces the final, completely assembled sequence ("finished" sequence). Thus, in general, prefinished sequence is produced in excess of finished sequence, and this trend is certain to continue and even accelerate over the next few years. Even at a prefinished stage, genomic sequence represents a rich source of important biological information that is of great interest to many investigators. However, analyzing such data is a challenging and daunting task, both because of its sheer volume and because it can change on a day-by-day basis. To facilitate the discovery and characterization of genes and other important elements within prefinished sequence, we have developed an analytical strategy and system that uses readily available software tools in new combinations. Implementation of this strategy for the analysis of prefinished sequence data from human chromosome 7 has demonstrated that this is a convenient, inexpensive, and extensible solution to the problem of analyzing the large amounts of preliminary data being produced by large-scale sequencing efforts. Our approach is accessible to any investigator who wishes to assimilate additional information about particular sequence data en route to developing richer annotations of a finished sequence.  (+info)

Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. (20/66602)

We are developing a self-assembling non-viral in vivo gene delivery vehicle based on poly-l-lysine and plasmid DNA. We have characterized poly-l-lysines of different chain lengths for DNA condensation and strength of DNA binding. Poly-l-lysine chains >20 residues bound DNA efficiently in physiological saline, while shorter chains did not. Attachment of asialoorosomucoid to PLL increased the PLL chain length required for efficient DNA binding in saline and for efficient DNA condensation. By electron microscopy, poly-l-lysine/DNA polyplexes appeared as toroids 25-50 nm in diameter or rods 40-80 nm long; conjugation of asialoorosomucoid to the polylysine component increased the size of resulting polyplexes to 50-90 nm. In water, poly-l-lysine and asialoorosomucoid-PLL polyplexes have effective diameters of 46 and 87.6 nm, respectively. Polyplexes containing only poly-l-lysine and DNA aggregated in physiological saline at all charge ratios and aggregated at neutral charge ratios in water. Attachment of asialoorosomucoid lessened, but did not eliminate, the aggregation of PLL polyplexes, and did not result in efficient delivery of polyplexes to hepatocytes. Conjugation of polyethylene glycol to poly-l-lysine sterically stabilized resulting polyplexes at neutral charge ratios by shielding the surfaces. For efficient in vivo gene delivery, polyplexes will need to be sterically stabilized to prevent aggregation and interaction with serum components.  (+info)

ATF-2-binding regulatory element is responsible for the Ly49A expression in murine T lymphoid line, EL-4. (21/66602)

To understand the mechanism of Ly49A-expression and its significance in T-cell differentiation, we analyzed the 5'-flanking region of the Ly49A gene in a search for the Ly49A-regulatory element. Since very few known regulatory elements have been found in this region, presumably a novel regulatory sequence(s) could exist. Accordingly, we defined the 13-bp regulatory element, 5'-ATGACGAGGAGGA-3', restricted to Ly49A-expression in EL-4 cells in comparison with two other representative cell lines tested. This element, designated as EL13, proved to be previously undiscovered by homology search and is highly homologous with several virus DNAs. Using EL13 as a probe we have cloned a cDNA encoding a binding protein to EL13. Its deduced nucleotide sequence revealed that EL13-binding protein is almost identical with rat ATF-2. Although ATF-2 is known to bind to cyclic AMP responsive element (CRE), EL13 shares five out of eight nucleotides with this consensus sequence. Our results suggested that ATF-2 may play an important role via binding to EL13 for the expression of Ly49A. These data will provide useful information for understanding T-cell and NK-cell differentiation in murine immune system.  (+info)

The five amino acid-deleted isoform of hepatocyte growth factor promotes carcinogenesis in transgenic mice. (22/66602)

Hepatocyte growth factor (HGF) is a polypeptide with mitogenic, motogenic, and morphogenic effects on different cell types including hepatocytes. HGF is expressed as two biologically active isotypes resulting from alternative RNA splicing. The roles of each HGF isoform in development, liver regeneration and tumorigenesis have not yet been well characterized. We report the generation and analysis of transgenic mice overexpressing the five amino acid-deleted variant of HGF (dHGF) in the liver by virtue of an albumin expression vector. These ALB-dHGF transgenic mice develop normally, have an enhanced rate of liver regeneration after partial hepatectomy, and exhibit a threefold higher incidence of hepatocellular carcinoma (HCC) beyond 17 months of age. Moreover, overexpression of dHGF dramatically accelerates diethyl-nitrosamine induced HCC tumorigenesis. These tumors arise faster, are significantly larger, more numerous and more invasive than those appearing in non-transgenic littermates. Approximately 90% of female dHGF-transgenic mice had multiple macroscopic HCCs 40 weeks after injection of DEN; whereas the non-transgenic counterparts had only microscopic nodules. Liver tumors and cultured tumor cell lines from dHGF transgenics showed high levels of HGF and c-Met mRNA and protein. Together, these results reveal that in vivo dHGF plays an active role in liver regeneration and HCC tumorigenesis.  (+info)

Differential regulation of the human nidogen gene promoter region by a novel cell-type-specific silencer element. (23/66602)

Transfection analyses of the human nidogen promoter region in nidogen-producing fibroblasts from adult skin revealed multiple positive and negative cis-acting elements controlling nidogen gene expression. Characterization of the positive regulatory domains by gel mobility-shift assays and co-transfection studies in Drosophila SL2 cells unequivocally demonstrated that Sp1-like transcription factors are essential for a high expression of the human nidogen gene. Analysis of the negative regulatory domains identified a novel silencer element between nt -1333 and -1322, which is bound by a distinct nuclear factor, by using extracts from adult but not from embryonal fibroblasts. In embryonal fibroblasts, which express significantly higher amounts of nidogen mRNA as compared with adult fibroblasts, this inhibitory nidogen promoter region did not affect nidogen and SV40 promoter activities. The silencer element seems to be active only in nidogen-producing cells. Therefore this regulatory element might function in vivo to limit nidogen gene expression in response to external stimuli. However, none of the identified regulatory elements, including the silencer, contribute significantly to cell-specific expression of the human nidogen gene. Instead we provide evidence that gene expression in epidermal keratinocytes that are not producing nidogen is repressed by methylation-specific and chromatin-dependent mechanisms.  (+info)

Heterogeneous nuclear ribonucleoprotein D0B is a sequence-specific DNA-binding protein. (24/66602)

Complement receptor 2 (CR2) is important in the regulation of the B lymphocyte response; the regulation of its expression is therefore of central importance. We recently reported that a 42 kDa heterogeneous nuclear ribonucleoprotein (hnRNP) is involved in the transcriptional regulation of the human CR2 gene [Tolnay, Lambris and Tsokos (1997) J. Immunol. 159, 5492-5501]. We cloned the cDNA encoding this protein and found it to be identical with hnRNP D0B, a sequence-specific RNA-binding protein. By using a set of mutated oligonucleotides, we demonstrated that the recombinant hnRNP D0B displays sequence specificity for double-stranded oligonucleotide defined by the CR2 promoter. We conducted electrophoretic mobility-shift assays to estimate the apparent Kd of hnRNP D0B for the double-stranded DNA motif and found it to be 59 nM. Interestingly, hnRNP D0B displayed affinities of 28 and 18 nM for the sense and anti-sense strands of the CR2 promoter-defined oligonucleotide respectively. The significantly greater binding affinity of hnRNP D0B for single-stranded DNA than for double-stranded DNA suggests that the protein might melt the double helix. The intranuclear concentration of sequence-specific protein was estimated to be 250-400 nM, indicating that the protein binds to the CR2 promoter in vivo. Co-precipitation of a complex formed in vivo between hnRNP D0B and the TATA-binding protein demonstrates that hnRNP D0B interacts with the basal transcription apparatus. Our results suggest a new physiological role for hnRNP D0B that involves binding to double- and single-stranded DNA sequences in a specific manner and functioning as a transcription factor.  (+info)