Application of distance geometry to 3D visualization of sequence relationships. (41/26780)

SUMMARY: We describe the application of distance geometry methods to the three-dimensional visualization of sequence relationships, with examples for mumps virus SH gene cDNA and prion protein sequences. Sequence-sequence distance measures may be obtained from either a multiple sequence alignment or from sets of pairwise alignments. AVAILABILITY: C/Perl code and HTML/VRML files from http://www.nibsc.ac.uk/dg3dseq/  (+info)

Adventitial delivery minimizes the proinflammatory effects of adenoviral vectors. (42/26780)

PURPOSE: Adenovirus-mediated arterial gene transfer is a promising tool in the study of vascular biology and the development of vascular gene therapy. However, intraluminal delivery of adenoviral vectors causes vascular inflammation and neointimal formation. Whether these complications could be avoided and gene transfer efficiency maintained by means of delivering adenoviral vectors via the adventitia was studied. METHODS: Replication-defective adenoviral vectors encoding a beta-galactosidase (beta-gal) gene (AdRSVnLacZ) or without a recombinant gene (AdNull) were infused into the lumen or the adventitia of rabbit carotid arteries. Two days after infusion of either AdRSVnLacZ (n = 8 adventitial, n = 8 luminal) or AdNull (n = 4 luminal), recombinant gene expression was quantitated by histochemistry (performed on tissue sections) and with a beta-gal activity assay (performed on vessel extracts). Inflammation caused by adenovirus infusion was assessed 14 days after infusion of either AdNull (n = 6) or vehicle (n = 6) into the carotid adventitia. Inflammation was assessed by means of examination of histologic sections for the presence of neointimal formation and infiltrating T cells and for the expression of markers of vascular cell activation (ICAM-1 and VCAM-1). To measure the systemic immune response to adventitial infusion of adenovirus, plasma samples (n = 3) were drawn 14 days after infusion of AdNull and assayed for neutralizing antibodies. RESULTS: Two days after luminal infusion of AdRSVnLacZ, approximately 30% of luminal endothelial cells expressed beta-gal. Similarly, 2 days after infusion of AdRSVnLacZ to the adventitia, approximately 30% of adventitial cells expressed beta-gal. beta-gal expression was present in the carotid adventitia, the internal jugular vein adventitia, and the vagus nerve perineurium. Elevated beta-gal activity (50- to 80-fold more than background; P <.05) was detected in extracts made from all AdRSVnLacZ-transduced arteries. The amount of recombinant protein expression per vessel did not differ significantly between vessels transduced via the adventitia (17.1 mU/mg total protein [range, 8.1 to 71.5]) and those transduced via a luminal approach (10.0 mU/mg total protein [range, 3.9 to 42.6]). Notably, adventitial delivery of AdNull did not cause neointimal formation. In addition, vascular inflammation in arteries transduced via the adventitia (ie, T-cell infiltrates and ICAM-1 expression) was confined to the adventitia, sparing both the intima and media. Antiadenoviral neutralizing antibodies were present in all rabbits after adventitial delivery of AdNull. CONCLUSION: Infusion of adenoviral vectors into the carotid artery adventitia achieves recombinant gene expression at a level equivalent to that achieved by means of intraluminal vector infusion. Because adventitial gene transfer can be performed by means of direct application during open surgical procedures, this technically simple procedure may be more clinically applicable than intraluminal delivery. Moreover, despite the generation of a systemic immune response, adventitial infusion had no detectable pathologic effects on the vascular intima or media. For these reasons, adventitial gene delivery may be a particularly useful experimental and clinical tool.  (+info)

Sequence heterogeneity within three different regions of the hepatitis G virus genome. (43/26780)

Two sets of primers derived from the 5'-terminal region and the NS5 region of the hepatitis G virus (HGV) genome were used to amplify PCR fragments from serum specimens obtained from different parts of the world. All PCR fragments from the 5'-terminal region (5'-PCR, n = 56) and from the NS5 region (NS5-PCR, n = 85) were sequenced and compared to corresponding published HGV sequences. The range of nucleotide sequence similarity varied from 74 and 78% to 100% for 5'-PCR and NS5-PCR fragments, respectively. Additionally, five overlapping PCR fragments comprising an approximately 2.0-kb structural region of the HGV genome were sequenced from each of five sera obtained from three United States residents. These sequences were compared to 20 published sequences comprising the same region of the HGV genome. Nucleotide and deduced amino acid sequences obtained from different individuals were homologous from 82.9 to 93. 6% and from 90.4 to 99.0%, respectively. Sequences obtained from follow-up specimens were almost identical. Comparative analysis of deduced amino acid sequences of the HGV structural proteins and hepatitis C virus (HCV) structural proteins combined with an analysis of predicted secondary structures and hydrophobic profiles allowed prediction of processing sites within the HGV structural proteins. A phylogenetic sequence analysis performed on the 2.0-kb structural region supports the existence of three previously identified HGV genetic groups. However, phylogenetic analysis performed on only small DNA fragments yielded inconsistent genetic grouping and failed to confirm the existence of genetic groups. Thus, in contrast to HCV where almost any region can be used for genotyping, only large or carefully selected genome fragments can be used to identify consistent HGV genetic groups.  (+info)

Natural selection of the Pol gene of bovine immunodeficiency virus. (44/26780)

Genetic variability is a salient feature of lentiviruses, contributing to the pathogenesis of these viruses by enabling them to persist in the host and to resist anti-retroviral treatment. Bovine immunodeficiency virus (BIV), a lentivirus of unknown pathology, infects cattle in the United States and worldwide. Genetic diversity of BIV that is associated with naturally infected cattle is not well studied. We examined the genetic diversity and natural selection of a segment of the BIV pol gene amplified from the leukocyte DNA of naturally infected cattle. A portion of the reverse transcriptase domain (183 bp) of the pol region was targeted for amplification by PCR. PCR products were sequenced directly and aligned. When compared to the sequences of BIV R29-127, a molecular clone of the original BIV R29 isolate, all isolates were greater than 91% identical in nucleotide sequences and 77% identical in amino acid sequences. Pol genotypes were polymorphic at 14% of the nucleotide sites. The ratio of nonsynonymous to synonymous nucleotide substitutions (relative to the number of respective sites, Ka/Ks) was 0.16, indicating that this region of the BIV genome, like that of HIV-1, is subject to purifying selection. Based on the McDonald-Kreitman analysis, this region also was under positive Darwinian selection as HIV-1 and BIV diverged from a common progenitor. Phylogenetic analysis revealed that genotypes were geographically distinct, possibly indicating a common source of infection for animals within a herd.  (+info)

Expression of hepatitis C virus cDNA in human hepatoma cell line mediated by a hybrid baculovirus-HCV vector. (45/26780)

Although great progress has been made in the characterization of the biochemical and biological features of hepatitis C virus (HCV) gene expression, the elucidation of the HCV life cycle and the evaluation of novel antiviral strategies have been hindered by the lack of a suitable cell culture system. In this context, the development of an efficient HCV cDNA delivery method would contribute to the understanding of HCV replication. To assess the functionality of baculovirus mediated gene delivery for HCV expression, we have constructed recombinant baculoviruses encoding HCV cDNA under the control of the cytomegalovirus promoter. Transduction of the human hepatoma cell line Huh-7 with Bac-HCV vectors was efficient and HCV cDNA expression was enhanced by treatment of the infected cells with dexamethasone. HCV structural and nonstructural polypeptides were processed correctly and were found to localize in the cytoplasm in a pattern characteristic of the endoplasmic reticulum. The expression of the HCV proteins was detected for 49 days after infection. Thus, these results indicate that the recombinant Bac-HCV vectors are a useful tool for the delivery of HCV cDNA and can facilitate the analysis of structural and functional properties of the HCV proteins. In addition, the Bac-HCV vectors can provide important information on the evaluation of novel anti-HCV antiviral strategies.  (+info)

Genetic variation of chlorella viruses: variable regions localized on the CVK2 genomic DNA. (46/26780)

A physical map of the Chlorella virus CVK2 genomic DNA has been constructed based on a cosmid contig covering the entire genomic region. By using Southern blot analysis with 22 gene probes, the gene arrangement along the genome was compared between CVK2 and PBCV-1, the prototypic member of Phycodnaviridae, whose genomic sequence is now available. The major rearrangements were (1) an insertion of a 20-kbp region around the left end of CVK2 DNA, (2) a duplication of the gene for major capsid protein in CVK2 DNA, (3) deletions/insertions of some open reading frames, and (4) divergence in the terminal inverted repeat sequences. Despite these changes, extensive colinearity was revealed between most of the genes along the CVK2 and PBCV-1 genomes. These data imply that the Chlorella virus genome has an overall high degree of genomic stability, encompassing specific islands of rearrangements.  (+info)

Qualitative and semiquantitative polymerase chain reaction testing for cytomegalovirus DNA in serum allows prediction of CMV related disease in liver transplant recipients. (47/26780)

AIM: To identify cytomegalovirus (CMV) infection in liver transplant recipients by polymerase chain reaction (PCR) techniques and to separate the cases in which CMV related disease will occur, for whom treatment is indicated, from those in whom infection will remain innocuous. METHODS: The combination of qualitative and semiquantitative PCR of serum and urine was assessed to determine whether these assays can identify those at risk of CMV related disease and compared their performance with conventional approaches to diagnosis. RESULTS: Qualitative PCR of serum had superior specificity, sensitivity, and positive and negative predictive values compared with urine DEAFF (detection of early antigen fluorescent foci) and PCR of urine. All episodes of CMV related disease were associated with the presence of CMV DNA by PCR in serum or urine; CMV was detected before clinical onset in 70% and 60% of cases, respectively. The period over which CMV DNA could be detected was not correlated with CMV related disease. Both peak viral load and cumulative viral load estimated using a semiquantitative PCR method on serum samples positive by the qualitative method could be used to distinguish asymptomatic infection from CMV related disease with 100% specificity and sensitivity. In contrast semiquantitative PCR of urine was of little value. CONCLUSIONS: An approach based on PCR testing with a combination of qualitative and subsequently semiquantitative serum samples would improve the diagnosis of CMV infection and aid identification of those patients at risk of CMV related disease, allowing treatment to be targeted specifically.  (+info)

Mutations in the retinoblastoma protein-binding LXCXE motif of rubella virus putative replicase affect virus replication. (48/26780)

The rubella virus (RV)-encoded protein NSP90, which contains the retinoblastoma protein (Rb)-binding motif LXCXE, interacts with Rb and RV replication is reduced in cells lacking Rb. Whether the LXCXE motif of RV NSP90 itself is essential for Rb binding and virus replication is not known. Therefore, in the present study, the functional role of this motif was investigated by site-directed mutagenesis in a plasmid from which infectious RV RNA can be produced. Three critical mutations in the motif, two substitutions at the conserved cysteine residue (C --> G and C --> R) and a deletion of the entire motif, were created. A cell-free translated NSP90 C terminus polypeptide containing the deletion did not bind to Rb and a polypeptide carrying the C --> R substitution had barely detectable binding affinity for Rb. Rb binding by the C --> G mutant was reduced significantly compared to that of wild-type protein. Correlating with the binding results, mutant viruses containing the LXRXE and LXGXE motifs had a reduction in replication to < 0.5% and 47% of the wild-type, respectively, while deletion of the motif was found to be lethal. By the first serial passage, replication of the LXRXE-carrying virus had increased from < 0.5% to 2% of the wild-type. Sequencing of the genome of this virus revealed a nucleotide change that altered the motif from LXRXE to LXSXE, which is a known Rb-binding motif in two protein phosphatase subunits. Thus, our results clearly demonstrate that the LXCXE motif is required for efficient RV replication.  (+info)