Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. (57/1629)

Like other reef-building corals, members of the genus Acropora form obligate endosymbioses with dinoflagellates (zooxanthellae) belonging to the genus Symbiodinium. Both Symbiodinium and its hosts are diverse assemblages, and the relationships between host and algal genotypes are unclear. In this study, we determined phylogenetic relationships between Symbiodinium isolates from a wide range of Acropora species and plotted the algal genotypes onto a molecular phylogeny of 28 Acropora species, using the same samples for the host and symbiont genotyping. In addition, we performed a preliminary survey of zooxanthella distribution in Acropora species from the central Great Barrier Reef. Three of the four known major zooxanthellae clades were represented in the 168 samples examined, and within the major clade C, three distinct subclades were identified. No evidence was found for coevolution, but several clear patterns of specificity were identified. Moreover, composition of the zooxanthella pool varied among locales and in one host species we found light-related patterns of zooxanthella distribution.  (+info)

Rapid identification and differentiation of the soft rot erwinias by 16S-23S intergenic transcribed spacer-PCR and restriction fragment length polymorphism analyses. (58/1629)

Current identification methods for the soft rot erwinias are both imprecise and time-consuming. We have used the 16S-23S rRNA intergenic transcribed spacer (ITS) to aid in their identification. Analysis by ITS-PCR and ITS-restriction fragment length polymorphism was found to be a simple, precise, and rapid method compared to current molecular and phenotypic techniques. The ITS was amplified from Erwinia and other genera using universal PCR primers. After PCR, the banding patterns generated allowed the soft rot erwinias to be differentiated from all other Erwinia and non-Erwinia species and placed into one of three groups (I to III). Group I comprised all Erwinia carotovora subsp. atroseptica and subsp. betavasculorum isolates. Group II comprised all E. carotovora subsp. carotovora, subsp. odorifera, and subsp. wasabiae and E. cacticida isolates, and group III comprised all E. chrysanthemi isolates. To increase the level of discrimination further, the ITS-PCR products were digested with one of two restriction enzymes. Digestion with CfoI identified E. carotovora subsp. atroseptica and subsp. betavasculorum (group I) and E. chrysanthemi (group III) isolates, while digestion with RsaI identified E. carotovora subsp. wasabiae, subsp. carotovora, and subsp. odorifera/carotovora and E. cacticida isolates (group II). In the latter case, it was necessary to distinguish E. carotovora subsp. odorifera and subsp. carotovora using the alpha-methyl glucoside test. Sixty suspected soft rot erwinia isolates from Australia were identified as E. carotovora subsp. atroseptica, E. chrysanthemi, E. carotovora subsp. carotovora, and non-soft rot species. Ten "atypical" E. carotovora subsp. atroseptica isolates were identified as E. carotovora subsp. atroseptica, subsp. carotovora, and subsp. betavasculorum and non-soft rot species, and two "atypical" E. carotovora subsp. carotovora isolates were identified as E. carotovora subsp. carotovora and subsp. atroseptica.  (+info)

Heteroduplex panel analysis, a novel method for genetic identification of Aspergillus Section Flavi strains. (59/1629)

For genetic identification of Aspergillus Section Flavi isolates and detection of intraspecific variation, we developed a novel method for heteroduplex panel analysis (HPA) utilizing fragments of the internal transcribed spacer (ITS) regions (ITS1-5.8S-ITS2) of the rRNA gene that was PCR amplified with universal primers. The method involves formation of heteroduplexes with a set of reference fragments amplified from Aspergillus flavus, A. parasiticus, A. tamarii, and A. nomius and subsequent minislab vinyl polymer gel electrophoresis. The test panel is compared with species-specific standard panels (F-1, P-1, T-1, and N-1) generated by pairwise reannealing among four reference fragments. Of 90 test panels, 89 succeeded in identifying the species and 74 were identical to one of the four standard panels. Of the 16 new panels, 11 A. flavus/A. oryzae panels were identical and typed as F-2 and 4 of 5 A. nomius panels were typed as N-2 or N-3. The other strain, A. nomius IMI 358749, was unable to identify the species because no single bands were formed with any of the four reference strains. DNA sequencing revealed that our HPA method has the highest sensitivity available and is able to detect as little as one nucleotide of diversity within the species. When Penicillium or non-Section Flavi Aspergillus was subjected to HPA, the resulting bands of heteroduplexes showed apparently lower mobility and poor heteroduplex formation. This indicates that HPA is a useful identification method without morphological observation and is suitable for rapid and inexpensive screening of large numbers of isolates. The HPA typing coincided with the taxonomy of Section Flavi and is therefore applicable as an alternative to the conventional methods (Samson, R. A., E. S. Hoekstra, J. C. Frisvad, and O. Filtenborg, p. 64-97, in Introduction to Food- and Airborne Fungi, 6th ed., 2000).  (+info)

Identification of clinical staphylococcal isolates from humans by internal transcribed spacer PCR. (60/1629)

The emergence of coagulase-negative staphylococci not only as human pathogens but also as reservoirs of antibiotic resistance determinants requires the deployment and development of methods for their rapid and reliable identification. Internal transcribed spacer-PCR (ITS-PCR) was used to identify a collection of 617 clinical staphylococcal isolates. The amplicons were resolved in high-resolution agarose gels and visually compared with the patterns obtained for the control strains of 29 staphylococcal species. Of the 617 isolates studied, 592 (95.95%) were identified by ITS-PCR and included 11 species: 302 isolates of Staphylococcus epidermidis, 157 of S. haemolyticus, 79 of S. aureus, 21 of S. hominis, 14 of S. saprophyticus, 8 of S. warneri, 6 of S. simulans, 2 of S. lugdunensis, and 1 each of S. caprae, S. carnosus, and S. cohnii. All species analyzed had unique ITS-PCR patterns, although some were very similar, namely, the group S. saprophyticus, S. cohnii, S. gallinarum, S. xylosus, S. lentus, S. equorum, and S. chromogenes, the pair S. schleiferi and S. vitulus, and the pair S. piscifermentans and S. carnosus. Four species, S. aureus, S. caprae, S. haemolyticus, and S. lugdunensis, showed polymorphisms on their ITS-PCR patterns. ITS-PCR proved to be a valuable alternative for the identification of staphylococci, offering, within the same response time and at lower cost, higher reliability than the currently available commercial systems.  (+info)

Rapid diversification of a species-rich genus of neotropical rain forest trees. (61/1629)

Species richness in the tropics has been attributed to the gradual accumulation of species over a long geological period in stable equatorial climates or, conversely, to speciation in response to late Tertiary geological events and unstable Pleistocene climates. DNA sequence data are consistent with recent diversification in Inga, a species-rich neotropical tree genus. We estimate that speciation was concentrated in the past 10 million years, with many species arising as recently as 2 million years ago. This coincides with the more recent major uplifts of the Andes, the bridging of the Isthmus of Panama, and Quaternary glacial cycles. Inga may be representative of other species-rich neotropical genera with rapid growth and reproduction, which contribute substantially to species numbers in the world's most diverse flora.  (+info)

Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. (62/1629)

Automated rRNA intergenic spacer analysis (ARISA) was used to characterise bacterial (B-ARISA) and fungal (F-ARISA) communities from different soil types. The 16S-23S intergenic spacer region from the bacterial rRNA operon was amplified from total soil community DNA for B-ARISA. Similarly, the two internal transcribed spacers and the 5.8S rRNA gene (ITS1-5.8S-ITS2) from the fungal rRNA operon were amplified from total soil community DNA for F-ARISA. Universal fluorescence-labeled primers were used for the PCRs, and fragments of between 200 and 1,200 bp were resolved on denaturing polyacrylamide gels by use of an automated sequencer with laser detection. Methodological (DNA extraction and PCR amplification) and biological (inter- and intrasite) variations were evaluated by comparing the number and intensity of peaks (bands) between electrophoregrams (profiles) and by multivariate analysis. Our results showed that ARISA is a high-resolution, highly reproducible technique and is a robust method for discriminating between microbial communities. To evaluate the potential biases in community description provided by ARISA, we also examined databases on length distribution of ribosomal intergenic spacers among bacteria (L. Ranjard, E. Brothier, and S. Nazaret, Appl. Environ. Microbiol. 66:5334-5339, 2000) and fungi.  (+info)

Diversity of toxic and nontoxic nodularia isolates (cyanobacteria) and filaments from the Baltic Sea. (63/1629)

Cyanobacteria of the genus Nodularia form toxic blooms in brackish waters worldwide. In addition, Nodularia spp. are found in benthic, periphytic, and soil habitats. The majority of the planktic isolates produce a pentapeptide hepatotoxin nodularin. We examined the morphologic, toxicologic, and molecular characters of 18 nodularin-producing and nontoxic Nodularia strains to find appropriate markers for distinguishing the toxic strains from the nontoxic ones in field samples. After classical taxonomy, the examined strains were identified as Nodularia sp., Nodularia spumigena, N. baltica, N. harveyana, and N. sphaerocarpa. Morphologic characters were ambiguous in terms of distinguishing between the toxic and the nontoxic strains. DNA sequences from the short 16S-23S rRNA internally transcribed spacer (ITS1-S) and from the phycocyanin operon intergenic spacer and its flanking regions (PC-IGS) were different for the toxic and the nontoxic strains. Phylogenetic analysis of the ITS1-S and PC-IGS sequences from strains identified as N. spumigena, and N. baltica, and N. litorea indicated that the division of the planktic Nodularia into the three species is not supported by the ITS1-S and PC-IGS sequences. However, the ITS1-S and PC-IGS sequences supported the separation of strains designated N. harveyana and N. sphaerocarpa from one another and the planktic strains. HaeIII digestion of PCR amplified PC-IGS regions of all examined 186 Nodularia filaments collected from the Baltic Sea produced a digestion pattern similar to that found in toxic isolates. Our results suggest that only one planktic Nodularia species is present in the Baltic Sea plankton and that it is nodularin producing.  (+info)

Rapid identification of yeasts in positive blood cultures by a multiplex PCR method. (64/1629)

Yeasts are emerging as important etiological agents of nosocomial bloodstream infections. A multiplex PCR method was developed to rapidly identify clinically important yeasts that cause fungemia. The method amplified the internal transcribed spacer 1 (ITS1) region between the 18S and 5.8S rRNA genes and a specific DNA fragment within the ITS2 region of Candida albicans. With this method, C. albicans produced two amplicons, whereas other species produced only one. Through sequence analysis, the precise lengths of the PCR products were found to be as follows: C. glabrata (482 or 483 bp), C. guilliermondii (248 bp), C. parapsilosis (229 bp), C. albicans (218 or 219 and 110 bp), C. tropicalis (218 bp), Cryptococcus neoformans (201 bp), and C. krusei (182 bp). The PCR products could be effectively separated by disk polyacrylamide gel electrophoresis. The method was used to test 249 positive blood cultures (255 isolates), from which the following species (strain number) were isolated: C. albicans (128), C. tropicalis (51), C. glabrata (28), C. parapsilosis (23), C. neoformans (9), C. krusei (5), C. guilliermondii (3), and other, minor species (8). The test sensitivity of the method was 96.9% (247 of 255 isolates). The eight minor species were either misidentified (one strain) or not identified (seven strains). From the time at which a positive bottle was found, the multiplex PCR could be completed within 8 h; the present method is simpler than any previously reported molecular method for the identification of blood yeasts.  (+info)