Structural changes of bacteriophage phi29 upon DNA packaging and release. (33/159)

Cryo-electron microscopy three-dimensional reconstructions have been made of mature and of emptied bacteriophage phi29 particles without making symmetry assumptions. Comparisons of these structures with each other and with the phi29 prohead indicate how conformational changes might initiate successive steps of assembly and infection. The 12 adsorption capable 'appendages' were found to have a structure homologous to the bacteriophage P22 tailspikes. Two of the appendages are extended radially outwards, away from the long axis of the virus, whereas the others are around and parallel to the phage axis. The appendage orientations are correlated with the symmetry-mismatched positions of the five-fold related head fibers, suggesting a mechanism for partial cell wall digestion upon rotation of the head about the tail when initiating infection. The narrow end of the head-tail connector is expanded in the mature virus. Gene product 3, bound to the 5' ends of the genome, appears to be positioned within the expanded connector, which may potentiate the release of DNA-packaging machine components, creating a binding site for attachment of the tail.  (+info)

Developmental biology: holding pattern for histones. (34/159)

New research on lipid droplets in Drosophila embryos has led to the surprising conclusion that these poorly understood organelles have a novel role as a regulated storage depot of maternally supplied proteins, particularly histones.  (+info)

A statistical approach to close packing of elastic rods and to DNA packaging in viral capsids. (35/159)

We propose a statistical approach for studying the close packing of elastic rods. This phenomenon belongs to the class of problems of confinement of low dimensional objects, such as DNA packaging in viral capsids. The method developed is based on Edwards' approach, which was successfully applied to polymer physics and to granular matter. We show that the confinement induces a configurational phase transition from a disordered (isotropic) phase to an ordered (nematic) phase. In each phase, we derive the pressure exerted by the rod (DNA) on the container (capsid) and the force necessary to inject (eject) the rod into (out of) the container. Finally, we discuss the relevance of the present results with respect to physical and biological problems. Regarding DNA packaging in viral capsids, these results establish the existence of ordered configurations, a hypothesis upon which previous calculations were built. They also show that such ordering can result from simple mechanical constraints.  (+info)

From structure of the complex to understanding of the biology. (36/159)

The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle.  (+info)

Efficient DNA packaging of bacteriophage PRD1 requires the unique vertex protein P6. (37/159)

The assembly of bacteriophage PRD1 proceeds via formation of empty procapsids containing an internal lipid membrane, into which the linear double-stranded DNA genome is subsequently packaged. The packaging ATPase P9 and other putative packaging proteins have been shown to be located at a unique vertex of the PRD1 capsid. Here, we describe the isolation and characterization of a suppressor-sensitive PRD1 mutant deficient in the unique vertex protein P6. Protein P6 was found to be an essential part of the PRD1 packaging machinery; its absence leads to greatly reduced packaging efficiency. Lack of P6 was not found to affect particle assembly, because in the P6-deficient mutant infection, wild-type (wt) amounts of particles were produced, although most were empty. P6 was determined not to be a specificity factor, as the few filled particles seen in the P6-deficient infection contained only PRD1-specific DNA. The presence of P6 was not necessary for retention of DNA in the capsid once packaging had occurred, and P6-deficient DNA-containing particles were found to be stable and infectious, albeit not as infectious as wt PRD1 virions. A packaging model for bacteriophage PRD1, based on previous results and those obtained in this study, is presented.  (+info)

Nutrient starvation promotes condensin loading to maintain rDNA stability. (38/159)

Nutrient starvation or rapamycin treatment, through inhibition of target of rapamycin, causes condensation of ribosomal DNA (rDNA) array and nucleolar contraction in budding yeast. Here we report that under such conditions, condensin is rapidly relocated into the nucleolus and loaded to rDNA tandem repeats, which is required for rDNA condensation. Rpd3-dependent histone deacetylation is necessary and sufficient for condensin's relocalization and loading to rDNA array, suggesting that histone modification plays a regulatory role for condensin targeting. Rapamycin independently, yet coordinately, inhibits rDNA transcription and promotes condensin loading to rDNA array. Unexpectedly, we found that inhibition of rDNA transcription in the absence of condensin loading leads to rDNA instability. Our data suggest that enrichment of condensin prevents rDNA instability during nutrient starvation. Together, these observations unravel a novel role for condensin in the maintenance of regional genomic stability.  (+info)

Formation of a multiple protein complex on the adenovirus packaging sequence by the IVa2 protein. (39/159)

During adenovirus virion assembly, the packaging sequence mediates the encapsidation of the viral genome. This sequence is composed of seven functional units, termed A repeats. Recent evidence suggests that the adenovirus IVa2 protein binds the packaging sequence and is involved in packaging of the genome. Study of the IVa2-packaging sequence interaction has been hindered by difficulty in purifying the protein produced in virus-infected cells or by recombinant techniques. We report the first purification of a recombinant untagged version of the adenovirus IVa2 protein and characterize its binding to the packaging sequence in vitro. Our data indicate that there is more than one IVa2 binding site within the packaging sequence and that IVa2 binding to DNA requires the A-repeat consensus, 5'-TTTG-(N(8))-CG-3'. Furthermore, we present evidence that IVa2 forms a multimeric complex on the packaging sequence. These data support a model in which adenovirus DNA packaging occurs via the formation of a IVa2 multiprotein complex on the packaging sequence.  (+info)

Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. (40/159)

Direct imaging or counting of RNA molecules has been difficult owing to its relatively low electron density for EM and insufficient resolution in AFM. Bacteriophage phi29 DNA-packaging motor is geared by a packaging RNA (pRNA) ring. Currently, whether the ring is a pentagon or hexagon is under fervent debate. We report here the assembly of a highly sensitive imaging system for direct counting of the copy number of pRNA within this 20-nm motor. Single fluorophore imaging clearly identified the quantized photobleaching steps from pRNA labeled with a single fluorophore and concluded its stoichiometry within the motor. Almost all of the motors contained six copies of pRNA before and during DNA translocation, identified by dual-color detection of the stalled intermediates of motors containing Cy3-pRNA and Cy5-DNA. The stalled motors were restarted to observe the motion of DNA packaging in real time. Heat-denaturation analysis confirmed that the stoichiometry of pRNA is the common multiple of 2 and 3. EM imaging of procapsid/pRNA complexes clearly revealed six ferritin particles that were conjugated to each pRNA ring.  (+info)