Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. (57/8708)

In this article we describe the structure of a hybrid zone in Argyll, Scotland, between native red deer (Cervus elaphus) and introduced Japanese sika deer (Cervus nippon), on the basis of a genetic analysis using 11 microsatellite markers and mitochondrial DNA. In contrast to the findings of a previous study of the same population, we conclude that the deer fall into two distinct genetic classes, corresponding to either a sika-like or red-like phenotype. Introgression is rare at any one locus, but where the taxa overlap up to 40% of deer carry apparently introgressed alleles. While most putative hybrids are heterozygous at only one locus, there are rare multiple heterozygotes, reflecting significant linkage disequilibrium within both sika- and red-like populations. The rate of backcrossing into the sika population is estimated as H = 0.002 per generation and into red, H = 0.001 per generation. On the basis of historical evidence that red deer entered Kintyre only recently, a diffusion model evaluated by maximum likelihood shows that sika have increased at approximately 9.2% yr-1 from low frequency and disperse at a rate of approximately 3.7 km yr-1. Introgression into the red-like population is greater in the south, while introgression into sika varies little along the transect. For both sika- and red-like populations, the degree of introgression is 30-40% of that predicted from the rates of current hybridization inferred from linkage disequilibria; however, in neither case is this statistically significant evidence for selection against introgression.  (+info)

Bleomycin genotoxicity alteration by glutathione and cytochrome P-450 cellular content in respiratory proficient and deficient strains of Saccharomyces cerevisiae. (58/8708)

The genotoxic effects of the antiblastic drug bleomycin were studied in the D7 strain of Saccharomyces cerevisiae and on its derivative mitochondrial mutant rho degree at different cellular concentrations of two drug metabolizing systems, glutathione (GSH) and cytochrome P-450. Bleomycin mutagenic activity was evaluated as frequencies of mitotic gene conversion, reversion and total aberrations under different physiological conditions. In the D7 strain, petite mutant induction was also detected. This is important due to the role of the mitochondrial genome in cancer induction, ageing and degenerative diseases. Both strains showed higher convertant than revertant induction. At high cytochrome P-450 levels, bleomycin-induced gene conversion was enhanced in both strains although mitochondrial functionality showed a detoxicant role while cellular GSH content decreased the induction of convertants only in the respiratory proficient strain. Cell metabolic conditions, such as cell cycle, aerobic/hypoxic conditions of the cell and content of drug metabolizing enzymes, appeared to interact with the genotoxic effectiveness of bleomycin. Moreover, the usefulness of S.cerevisiae as a model organism for drug assessment for mutagenicity was emphasized.  (+info)

Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. (59/8708)

Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP4- for ADP3- by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximately 110 mV in permeabilized cells and approximately 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximately 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.  (+info)

mtDNA haplogroup J: a contributing factor of optic neuritis. (60/8708)

Optic neuritis frequently occurs in multiple sclerosis (MS), and shares several similarities with the optic neuritis of Leber's hereditary optic neuropathy (LHON), which is mainly due to maternally transmitted mitochondrial DNA (mtDNA) mutations. Our report shows for the first time that a mitochondrial DNA background could influence the clinical expression of MS. One European mtDNA haplogroup was found only in MS patients with optic neuritis but not in MS patients without visual symptoms. Therefore, we hypothesize that mtDNA haplogroup J might constitute a risk factor for optic neuritis occurrence when it is coincidentally associated with MS, but not be a risk factor for developing MS per se as suggested previously.  (+info)

DNA sequence of the mitochondrial hypervariable region II from the neandertal type specimen. (61/8708)

The DNA sequence of the second hypervariable region of the mitochondrial control region of the Neandertal type specimen, found in 1856 in central Europe, has been determined from 92 clones derived from eight overlapping amplifications performed from four independent extracts. When the reconstructed sequence is analyzed together with the previously determined DNA sequence from the first hypervariable region, the Neandertal mtDNA is found to fall outside a phylogenetic tree relating the mtDNAs of contemporary humans. The date of divergence between the mtDNAs of the Neandertal and contemporary humans is estimated to 465,000 years before the present, with confidence limits of 317,000 and 741,000 years. Taken together, the results support the concept that the Neandertal mtDNA evolved separately from that of modern humans for a substantial amount of time and lends no support to the idea that they contributed mtDNA to contemporary modern humans.  (+info)

Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. (62/8708)

Quantitative information on the cell-to-cell distribution of all possible mitochondrial DNA (mtDNA) mutations in young and aged tissues is needed to assess the relevance of these mutations to the aging process. In the present study, we used PCR amplification of full-length mitochondrial genomes from single cells to scan human cardiomyocytes for all possible large deletions in mtDNA. Analysis of more than 350 individual cells that were derived from three middle-aged and four centenarian donors demonstrates that while most of the cells contain no deletions, in certain cardiomyocytes a significant portion of the mtDNA molecules carried one particular deletion. Different affected cells contained different deletions. Although similar numbers of cells were screened for each donor, these deletion-rich cells were found only in the hearts of old donors, where they occurred at a frequency of up to one in seven cells. These initial observations demonstrate the efficiency of the method and indicate that mitochondrial mutations have the potential to play an important role in human myocardial aging.  (+info)

The accessory subunit of Xenopus laevis mitochondrial DNA polymerase gamma increases processivity of the catalytic subunit of human DNA polymerase gamma and is related to class II aminoacyl-tRNA synthetases. (63/8708)

Peptide sequences obtained from the accessory subunit of Xenopus laevis mitochondrial DNA (mtDNA) polymerase gamma (pol gamma) were used to clone the cDNA encoding this protein. Amino-terminal sequencing of the mitochondrial protein indicated the presence of a 44-amino-acid mitochondrial targeting sequence, leaving a predicted mature protein with 419 amino acids and a molecular mass of 47.3 kDa. This protein is associated with the larger, catalytic subunit in preparations of active mtDNA polymerase. The small subunit exhibits homology to its human, mouse, and Drosophila counterparts. Interestingly, significant homology to glycyl-tRNA synthetases from prokaryotic organisms reveals a likely evolutionary relationship. Since attempts to produce an enzymatically active recombinant catalytic subunit of Xenopus DNA pol gamma have not been successful, we tested the effects of adding the small subunit of the Xenopus enzyme to the catalytic subunit of human DNA pol gamma purified from baculovirus-infected insect cells. These experiments provide the first functional evidence that the small subunit of DNA pol gamma stimulates processive DNA synthesis by the human catalytic subunit under physiological salt conditions.  (+info)

Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. (64/8708)

Podospora anserina is a filamentous fungus with a limited life span. It expresses a degenerative syndrome called senescence, which is always associated with the accumulation of circular molecules (senDNAs) containing specific regions of the mitochondrial chromosome. A mobile group II intron (alpha) has been thought to play a prominent role in this syndrome. Intron alpha is the first intron of the cytochrome c oxidase subunit I gene (COX1). Mitochondrial mutants that escape the senescence process are missing this intron, as well as the first exon of the COX1 gene. We describe here the first mutant of P. anserina that has the alpha sequence precisely deleted and whose cytochrome c oxidase activity is identical to that of wild-type cells. The integration site of the intron is slightly modified, and this change prevents efficient homing of intron alpha. We show here that this mutant displays a senescence syndrome similar to that of the wild type and that its life span is increased about twofold. The introduction of a related group II intron into the mitochondrial genome of the mutant does not restore the wild-type life span. These data clearly demonstrate that intron alpha is not the specific senescence factor but rather an accelerator or amplifier of the senescence process. They emphasize the role that intron alpha plays in the instability of the mitochondrial chromosome and the link between this instability and longevity. Our results strongly support the idea that in Podospora, "immortality" can be acquired not by the absence of intron alpha but rather by the lack of active cytochrome c oxidase.  (+info)