Apoptosis induction by E2F-1 via adenoviral-mediated gene transfer results in growth suppression of head and neck squamous cell carcinoma cell lines. (41/3950)

E2F-1, a transcription factor by discovery, is thought to play a crucial role in regulating G1/S cell cycle progression. Its activity is modulated by complex formation with the retinoblastoma protein and related proteins. Overexpression of E2F-1 has been shown to induce apoptosis in quiescent fibroblasts. We constructed a recombinant E2F-1 adenovirus to test whether an overexpression of E2F-1 in head and neck squamous cell carcinoma cell lines would also induce apoptosis. Two cell lines, Tu-138 and Tu-167, were chosen for use in this study. Both cell lines harbor p53 mutations but express different levels of the retinoblastoma protein. Upon E2F-1 adenovirus infection, both cell lines expressed elevated levels of E2F-1 protein and then activated a pRb-chloramphenicol acetyltransferase reporter construct containing an E2F-1 binding motif. In vitro growth assay demonstrated that growth suppression by the E2F-1 protein was effective on both cell lines. Results from DNA fragmentation and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling analyses indicated apoptosis induction in cells infected with AdCMV-E2F-1. Moreover, ex vivo experiments in nude mice showed total suppression of tumor growth at sites that received cells infected AdCMV-E2F-1. An in vivo analysis of apoptosis using in situ end-labeling further demonstrated the induction of apoptosis by AdCMV-E2F-1 in tumor-bearing animals. These data indicate that overexpression of E2F-1 via an adenoviral vector suppresses in vitro and in vivo growth of head and neck squamous carcinoma cell lines through induction of apoptosis.  (+info)

Differential chemosensitivity of breast cancer cells to ganciclovir treatment following adenovirus-mediated herpes simplex virus thymidine kinase gene transfer. (42/3950)

The development of resistance to radiation and chemotherapeutic agents that cause DNA damage is a major problem for the treatment of breast and other cancers. The p53 tumor suppressor gene plays a direct role in the signaling of cell cycle arrest and apoptosis in response to DNA damage, and p53 gene mutations have been correlated with increased resistance to DNA-damaging agents. Herpes simplex virus thymidine kinase (HSV-tk) gene transfer followed by ganciclovir (GCV) treatment is a novel tumor ablation strategy that has shown good success in a variety of experimental tumor models. However, GCV cytotoxicity is believed to be mediated by DNA damage-induced apoptosis, and the relationship between p53 gene status, p53-mediated apoptosis, and the sensitivity of human tumors to HSV-tk/GCV treatment has not been firmly established. To address this issue, we compared the therapeutic efficacy of adenovirus-mediated HSV-tk gene transfer and GCV treatment in two human breast cancer cell lines: MCF-7 cells, which express wild-type p53, and MDA-MB-468 cells, which express high levels of a mutant p53 (273 Arg-His). Treating MCF-7 cells with AdHSV-tk/GCV led to the predicted increase in endogenous p53 and p21WAF1/CIP1 protein levels, and apoptosis was observed in a significant proportion of the target cell population. However, treating MDA-MB-468 cells under the same conditions resulted in a much stronger apoptotic response in the absence of induction in p21WAF1/CIP1 protein levels. This latter result suggested that HSV-tk/GCV treatment can activate a strong p53-independent apoptotic response in tumor cells that lack functional p53. To confirm this observation, four additional human breast cancer cell lines expressing mutant p53 were examined. Although a significant degree of variability in GCV chemosensitivity was observed in these cell lines, all displayed a greater reduction in cell viability than MCF-7 or normal mammary cells treated under the same conditions. These results suggest that endogenous p53 status does not correlate with chemosensitivity to HSV-tk/GCV treatment. Furthermore, evidence for a p53-independent apoptotic response serves to extend the potential of this therapeutic strategy to tumors that express mutant p53 and that may have developed resistance to conventional genotoxic agents.  (+info)

Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. (43/3950)

A linear mammalian artificial chromosome (MAC) will require at least three types of functional element: a centromere, two telomeres and origins of replication. As yet, our understanding of these elements, as well as many other aspects of structure and organization which may be critical for a fully functional mammalian chromosome, remains poor. As a way of defining these various requirements, minichromosome reagents are being developed and analysed. Approaches for minichromosome generation fall into two broad categories: de novo assembly from candidate DNA sequences, or the fragmentation of an existing chromosome to reduce it to a minimal size. Here we describe the generation of a human minichromosome using the latter, top-down, approach. A human X chromosome, present in a DT40-human microcell hybrid, has been manipulated using homologous recombination and the targeted seeding of a de novo telomere. This strategy has generated a linear approximately 2.4 Mb human X centromere-based minichromosome capped by two artificially seeded telomeres: one immediately flanking the centromeric alpha-satellite DNA and the other targeted to the zinc finger gene ZXDA in Xp11.21. The chromosome retains an alpha-satellite domain of approximately 1. 8 Mb, a small array of gamma-satellite repeat ( approximately 40 kb) and approximately 400 kb of Xp proximal DNA sequence. The mitotic stability of this minichromosome has been examined, both in DT40 and following transfer into hamster and human cell lines. In all three backgrounds, the minichromosome is retained efficiently, but in the human and hamster microcell hybrids its copy number is poorly regulated. This approach of engineering well-defined chromosome reagents will allow key questions in MAC development (such as whether a lower size limit exists) to be addressed. In addition, the 2.4 Mb minichromosome described here has potential to be developed as a vector for gene delivery.  (+info)

Interdependent regulation of intracellular acidification and SHP-1 in apoptosis. (44/3950)

The G protein-coupled receptor agonist somatostatin (SST)-induces apoptosis in MCF-7 human breast cancer cells. This is associated with induction of wild-type p53, Bax, and an acidic endonuclease. We have shown recently that its cytotoxic signaling is mediated via membrane-associated SHP-1 and is dependent on decrease in intracellular pH (pHi) to 6.5. Here we investigated the relationship between intracellular acidification and SHP-1 in cytotoxic signaling. Clamping of pHi at 7.25 by the proton-ionophore nigericin abolished SST-signaled apoptosis without affecting its ability to regulate SHP-1, p53, and Bax. Apoptosis could be induced by nigericin clamping of pHi to 6.5. Such acidification-induced apoptosis was not observed at pHi <6.0 or >6.7. pHi-dependent apoptosis was associated with the translocation of SHP-1 to the membrane, enhanced in cells overexpressing SHP-1, and was abolished by its inactive mutant SHP-1C455S. Acidification caused by inhibition of Na+/H+ exchanger and H+ ATPase (pHi = 6.55 and 6.65, respectively) also triggered apoptosis. The effect of concurrent inhibition of Na+/H+ exchanger and H(+)-ATPase on pHi and apoptosis was comparable with that of SST. Acidification-induced, SHP-1-dependent apoptosis occurred in breast cancer cell lines in which SST was cytotoxic (MCF-7 and T47D) or not (MDA-MB-231). We conclude that: (a) SST-induced SHP-1-dependent acidification occurs subsequent to or independent of the induction of p53 and Bax; (b) SST-induced intracellular acidification may arise due to inhibition of Na+/H+ exchanger and H(+)-ATPase; and (c) SHP-1 is necessary not only for agonist-induced acidification but also for the execution of acidification-dependent apoptosis. We suggest that combined targeting of SHP-1 and intracellular acidification may lead to a novel strategy of anticancer therapy bypassing the need for receptor-mediated signaling.  (+info)

Partial characterization of apoptotic factor in Alzheimer plasma. (45/3950)

We have previously demonstrated that a plasma natriuretic factor is present in Alzheimer's disease (AD), but not in multi-infarct dementia (MID) or normal controls (C). We postulated that the natriuretic factor might induce the increased cytosolic calcium reported in AD by inhibiting the sodium-calcium antiporter, thereby activating the apoptotic pathway. To test for a factor in AD plasma that induces apoptosis, we exposed nonconfluent cultured LLC-PK1 cells to plasma from AD, MID, and C for 2 h and performed a terminal transferase-dUTP-nick-end labeling (TUNEL) assay. The plasma from AD increased apoptosis nearly fourfold compared with MID and C. The effect was dose dependent and the peak effect was attained after a 2-h exposure. Additionally, apoptotic morphology was detected by electron microscopy, and internucleosomal DNA cleavage was found. We inhibited apoptosis by removing calcium from the medium, inhibiting protein synthesis with cycloheximide, alternately boiling or freezing and thawing the plasma, and digesting a partially purified fraction with trypsin. Heating AD plasma to 56 degrees C did not deactivate the apoptotic factor. These results demonstrate the presence of an apoptotic factor in the plasma of patients with AD.  (+info)

Type II cAMP-dependent protein kinase regulates electrogenic ion transport in rabbit collecting duct. (46/3950)

cAMP mediates many of the effects of vasopressin, prostaglandin E2, and beta-adrenergic agents upon salt and water transport in the renal collecting duct. The present studies examined the role of cAMP-dependent protein kinase (PKA) in mediating these effects. PKA is a heterotetramer comprised of two regulatory (R) subunits and two catalytic (C) subunits. The four PKA isoforms may be distinguished by their R subunits that have been designated RIalpha, RIbeta, RIIalpha, and RIIbeta. Three regulatory subunits, RIalpha, RIIalpha, and RIIbeta, were detected by immunoblot and ribonuclease protection in both primary cultures and fresh isolates of rabbit cortical collecting ducts (CCDs). Monolayers of cultured CCDs grown on semipermeable supports were mounted in an Ussing chamber, and combinations of cAMP analogs that selectively activate PKA type I vs. PKA type II were tested for their effect on electrogenic ion transport. Short-circuit current (Isc) was significantly increased by the PKA type II-selective analog pairs N6-monobutyryl-cAMP plus 8-(4-chlorophenylthio)-cAMP or N6-monobutyryl-cAMP plus 8-chloro-cAMP. In contrast the PKA type I-selective cAMP analog pair [N6-monobutyryl-cAMP plus 8-(6-aminohexyl)-amino-cAMP] had no effect on Isc. These results suggest PKA type II is the major isozyme regulating electrogenic ion transport in the rabbit collecting duct.  (+info)

Role of DNAS1L3 in Ca2+- and Mg2+-dependent cleavage of DNA into oligonucleosomal and high molecular mass fragments. (47/3950)

Ca2+- and Mg2+-dependent endonucleases have been implicated in DNA fragmentation during apoptosis. We have demonstrated that particular nucleases of this type are inhibited by poly(ADP-ribosyl)ation and suggested that subsequent cleavage of PARP by caspase-3 might release these nucleases from poly(ADP-ribosyl)ation-induced inhibition. Hence, we purified and partially sequenced such a nuclease isolated from bovine seminal plasma and identified human, rat and mouse homologs of this enzyme. The extent of sequence homology among these nucleases indicates that these four proteins are orthologous members of the family of DNase I-related enzymes. We demonstrate that the activation of the human homolog previously specified as DNAS1L3 can induce Ca2+- and Mg2+-dependent DNA fragmentation in vitro and in vivo. RT-PCR analysis failed to detect DNAS1L3 mRNA in HeLa cells and nuclei isolated from these cells did not exhibit internucleosomal DNA fragmentation when incubated in the presence of Ca2+and Mg2+. However, nuclei isolated from HeLa cells that had been stably transfected with DNAS1L3 cDNA underwent such DNA fragmentation in the presence of both ions. The Ca2+ionophore ionomycin also induced internucleosomal DNA degradation in transfected but not in control HeLa cells. Transverse alternating field electrophoresis revealed that in nuclei from transfected HeLa cells, but not in those from control cells, DNA was cleaved into fragments of >1000 kb in the presence of Mg2+; addition of Ca2+in the presence of Mg2+resulted in processing of the >1000 kb fragments into 50 kb and oligonucleosomal fragments. These results demonstrate that DNAS1L3 is necessary for Ca2+- and Mg2+-dependent cleavage of DNA into both oligonucleosomal and high molecular mass fragments in specific cell types.  (+info)

Virus infection induces neuronal apoptosis: A comparison with trophic factor withdrawal. (48/3950)

Multicellular organisms can employ a number of defences to combat viral replication, the most dramatic being implementation of a cell autonomous apoptotic process. The overall cost to the viability of an organism of losing infected cells by apoptosis may be small if the dying cells can be substituted. In contrast, suicide of irreplaceable cells such as highly specialised neurons may have a more dramatic, even fatal consequence. Previous in vitro approaches to understanding whether neurotropic viruses cause neurons to apoptose have utilised transformed cell lines. These are not in the appropriate state of differentiation to provide an accurate indication of events in vivo. We have chosen to characterise the ability of a model CNS disease-causing virus, Semliki Forest virus (SFV), to infect and trigger apoptosis in primary cultures of nerve growth factor (NGF)-dependent sensory neurons. These cells are known to die when deprived of NGF and constitute a useful indicator of apoptosis. We observe that infection causes cell death which bears the morphological hallmarks of apoptosis, this occurs even in the present of survival promoting NGF and is concomitant with new virus production. Using the TUNEL (transferase dUTP nick end labelling) technique we show that SFV-induced apoptosis involves DNA fragmentation and requires caspase (CED-3/ICE cysteine protease) activation, as does apoptosis induced by NGF-deprivation. Extensive areas of apoptosis, as defined using a combination of ultrastructural analysis and TUNEL occur in infected neonatal mouse brains. The novel evidence that infection of primary neurons with SFV induces apoptosis with activation of one or more caspases defines a system for the further anlaysis of apoptosis regulation in physiologically relevant neurons.  (+info)