A developmental switch from TCR delta enhancer to TCR alpha enhancer function during thymocyte maturation. (73/1876)

V(D)J recombination and transcription within the TCR alpha/delta locus are regulated by three characterized cis-acting elements: the TCR delta enhancer (Edelta), TCR alpha enhancer (Ealpha), and T early alpha (TEA) promoter. Analysis of enhancer and promoter occupancy and function in developing thymocytes in vivo indicates Edelta and Ealpha to be developmental-stage-specific enhancers, with Edelta "on" and Ealpha "off" in double-negative III thymocytes and Edelta "off" and Ealpha "on" in double-positive thymocytes. Edelta downregulation reflects a loss of occupancy. Surprisingly, Ealpha and TEA are extensively occupied even prior to activation. TCR delta downregulation in double-positive thymocytes depends on two events, Edelta inactivation and removal of TCR delta from the influence of Ealpha by chromosomal excision.  (+info)

The transcription factor Sp3 interacts with promoter elements of the lens specific MIP gene. (74/1876)

PURPOSE: To characterize the cis regulatory elements and their interaction with transcription factors responsible for the lens specific expression of the MIP gene, which encodes the Major Intrinsic Protein of the lens fiber membranes. METHODS: Study interaction of factors present in newborn mouse lens nuclear extracts with DNA fragments corresponding to mouse MIP gene 5' flanking sequence by electrophoresis mobility shift assay (EMSA) and DNase I footprinting. RESULTS: We found a high degree of identity in the first 100 bp of 5' flanking sequence of mice and humans, however, a lower degree of conservation is observed further upstream. We have found by DNase I footprinting analysis that lens specific factors may interact with the first 100 bp of 5' flanking sequence. A domain containing an E box, conserved in mouse and human, may interact with a lens specific factor. However, general factors may interact with a NF-1 binding site. An overlapping GC and CT box is present in the mouse MIP gene. In the human MIP gene GC and CT boxes are found in different domains of the MIP gene promoter. Both CT boxes interact with factors present in lens nuclear extracts including Sp3. They are able to interact with purified Sp1but not with Sp1 present in mouse lens nuclear extracts. CONCLUSIONS: The transcription factor Sp3 may play an important role in regulating MIP gene expression in the lens.  (+info)

A novel 14-base-pair regulatory element is essential for in vivo expression of murine beta4-galactosyltransferase-I in late pachytene spermatocytes and round spermatids. (75/1876)

During murine spermatogenesis, beginning in late pachytene spermatocytes, the beta4-galactosyltransferase-I (beta4GalT-I) gene is transcribed from a male germ cell-specific start site. We had shown previously that a 796-bp genomic fragment that flanks the germ cell start site and contains two putative CRE (cyclic AMP-responsive element)-like motifs directs correct male germ cell expression of the beta-galactosidase reporter gene in late pachytene spermatocytes and round spermatids of transgenic mice (N. L. Shaper, A. Harduin-Lepers, and J. H. Shaper, J. Biol. Chem. 269:25165-25171, 1994). We now report that in vivo expression of beta4GalT-I in developing male germ cells requires an essential and previously undescribed 14-bp regulatory element (5'-GCCGGTTTCCTAGA-3') that is distinct from the two CRE-like sequences. This cis element is located 16 bp upstream of the germ cell-specific start site and binds a male germ cell protein that we have termed TASS-1 (transcriptional activator in late pachytene spermatocytes and round spermatids 1). The presence of the Ets signature binding motif 5'-GGAA-3' on the bottom strand of the TASS-1 sequence (underlined sequence) suggests that TASS-1 is a novel member of the Ets family of transcription factors. Additional transgenic analyses established that an 87-bp genomic fragment containing the TASS-1 regulatory element was sufficient for correct germ cell-specific expression of the beta-galactosidase reporter gene. Furthermore, when the TASS-1 motif was mutated by transversion, within the context of the original 796-bp fragment, transgene expression was reduced 12- to 35-fold in vivo.  (+info)

Characterization of regulatory elements on the promoter region of human ATP-citrate lyase. (76/1876)

ATP-citrate lyase (ACL), an enzyme catalyzing the first step in biosynthesis of fatty acids, is induced during the lipogenesis and cholesterologenesis. We demonstrate that the region -213 to -128 of human ACL promoter is responsible for conferring glucose-mediated transcription. This region in the ACL promoter contains Sp1 binding sites determined by DNase I foot-printing assay. Gel retardation assay using oligonucleotides from -179 to -141 and -140 to -110 showed two specific DNA-protein complexes postulated to be formed by transcription factor Sp1. Competition gel shift and supershift assays have confirmed that these DNA-protein complexes were the result of induced Sp1 as well as another Sp1-related proteins. Western blot analysis also demonstrated that transcription factor Sp1 was slightly increased in the nuclear proteins extracted from Alexander cells following supplementation of glucose. In addition, expression of 110 kDa protein reacting with antibody against Sp3 was dramatically increased by glucose supplementation, while isoforms of Sp3, about 80 kDa in size was decreased in its amounts. Our results suggest that changes in the expression of Sp1 family proteins play an important role in activation of the ACL promoter by glucose.  (+info)

Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors. (77/1876)

Oxazolidinones are antibacterial agents that act primarily against gram-positive bacteria by inhibiting protein synthesis. The binding of oxazolidinones to 70S ribosomes from Escherichia coli was studied by both UV-induced cross-linking using an azido derivative of oxazolidinone and chemical footprinting using dimethyl sulphate. Oxazolidinone binding sites were found on both 30S and 50S subunits, rRNA being the only target. On 16S rRNA, an oxazolidinone footprint was found at A864 in the central domain. 23S rRNA residues involved in oxazolidinone binding were U2113, A2114, U2118, A2119, and C2153, all in domain V. This region is close to the binding site of protein L1 and of the 3' end of tRNA in the E site. The mechanism of action of oxazolidinones in vitro was examined in a purified translation system from E. coli using natural mRNA. The rate of elongation reaction of translation was decreased, most probably because of an inhibition of tRNA translocation, and the length of nascent peptide chains was strongly reduced. Both binding sites and mode of action of oxazolidinones are unique among the antibiotics known to act on the ribosome.  (+info)

Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. (78/1876)

An important aspect of the specification of neuronal fate is the choice of neurotransmitter. In Caenorhabditis elegans the neurotransmitter GABA is synthesized by the UNC-25 glutamic acid decarboxylase (GAD) and packaged into synaptic vesicles by the UNC-47 transporter. Both unc-25 and unc-47 are expressed in 26 GABAergic neurons of five different types. Previously, we have identified that the unc-30 homeobox gene controls the fate of 19 type D GABAergic neurons. We report here that the UNC-30 homeodomain protein transcriptionally regulates the expression of unc-25 and unc-47 in the 19 type D neurons. UNC-30 bound to the unc-25 and unc-47 promoters sequence-specifically. Mutations in the UNC-30 binding sites of the unc-25 and unc-47 promoters abolished the expression of reporter genes in the D neurons. The ectopic expression of UNC-30 induced the ectopic expression of reporter genes driven by the wild-type unc-25 and unc-47 promoters. Our data establish a mechanism for cell type-specific transcriptional coregulation of genes required for the synthesis and packaging of the neurotransmitter GABA.  (+info)

Analysis of DNase-I-hypersensitive sites at the 3' end of the cystic fibrosis transmembrane conductance regulator gene (CFTR). (79/1876)

The cystic fibrosis transmembrane conductance regulator gene (CFTR) exhibits a complex pattern of expression that shows temporal and spatial regulation, although the control mechanisms are not fully known. We have mapped DNase-I-hypersensitive sites (DHSs) flanking the CFTR gene with the aim of identifying potential regulatory elements. We previously characterized DHSs at -79.5 and -20.9 kb with respect to the CFTR translational start site and a regulatory element in the first intron of the gene at 185+10 kb. We have now mapped five DHSs lying 3' to the CFTR gene at 4574+5.4, +6.8, +7.0, +7.4 and +15.6 kb that show some degree of tissue specificity. The DHSs are seen in chromatin extracted from human primary epithelial cells and cell lines; the presence of the +15.6 kb site is tissue-specific in transgenic mice carrying a human CFTR yeast artificial chromosome. Further analysis of the 4574+15.6 kb DHS implicates the involvement of CCAAT-enhancer-binding protein (C/EBP), cAMP-response-element-binding protein (CREB)/activating transcription factor (ATF) and activator protein 1 (AP-1) family transcription factors at this regulatory element.  (+info)

DNA ligase III is recruited to DNA strand breaks by a zinc finger motif homologous to that of poly(ADP-ribose) polymerase. Identification of two functionally distinct DNA binding regions within DNA ligase III. (80/1876)

Mammalian DNA ligases are composed of a conserved catalytic domain flanked by unrelated sequences. At the C-terminal end of the catalytic domain, there is a 16-amino acid sequence, known as the conserved peptide, whose role in the ligation reaction is unknown. Here we show that conserved positively charged residues at the C-terminal end of this motif are required for enzyme-AMP formation. These residues probably interact with the triphosphate tail of ATP, positioning it for nucleophilic attack by the active site lysine. Amino acid residues within the sequence RFPR, which is invariant in the conserved peptide of mammalian DNA ligases, play critical roles in the subsequent nucleotidyl transfer reaction that produces the DNA-adenylate intermediate. DNA binding by the N-terminal zinc finger of DNA ligase III, which is homologous with the two zinc fingers of poly(ADP-ribose) polymerase, is not required for DNA ligase activity in vitro or in vivo. However, this zinc finger enables DNA ligase III to interact with and ligate nicked DNA at physiological salt concentrations. We suggest that in vivo the DNA ligase III zinc finger may displace poly(ADP-ribose) polymerase from DNA strand breaks, allowing repair to occur.  (+info)