Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site. (1/1876)

Group II self-splicing requires the 5' exon to form base pairs with two stretches of intronic sequence (EBS1 and EBS2) which also bind the DNA target during retrotransposition of the intron. We have used dimethyl sulfate modification of bases to obtain footprints of the 5' exon on intron Pl.LSU/2 from the mitochondrion of the alga Pylaiella littoralis, as well as on truncated intron derivatives. Aside from the EBS sites, which are part of the same subdomain (ID) of ribozyme secondary structure, three distant adenines become either less or more sensitive to modification in the presence of the exon. Unexpectedly, one of these adenines in subdomain IC1 is footprinted only in the presence of the distal helix of domain V, which is involved in catalysis. While the loss of that footprint is accompanied by a 100-fold decrease in the affinity for the exon, both protection from modification and efficient binding can be restored by a separate domain V transcript, whose binding results in its own, concise footprint on domains I and III. Possible biological implications of the need for the group II active site to be complete in order to observe high-affinity binding of the 5' exon to domain I are discussed.  (+info)

Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum. (2/1876)

Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies was observed through a phenotypic assay for excision based on the restoration of nitrate reductase activity. Inactivation of the Fot1 transposase open reading frame (frameshift, deletion, or disruption) prevented excision in strains free of Fot1 elements. Molecular analysis of the Nia+ revertant strains showed that the Fot1 element reintegrated frequently into new genomic sites after excision and that it can transpose from the introduced niaD gene into a different chromosome. Sequence analysis of several Fot1 excision sites revealed the so-called footprint left by this transposable element. Three reinserted Fot1 elements were cloned and the DNA sequences flanking the transposon were determined using inverse polymerase chain reaction. In all cases, the transposon was inserted into a TA dinucleotide and created the characteristic TA target site duplication. The availability of autonomous Fot1 copies will now permit the development of an efficient two-component transposon tagging system comprising a trans-activator element supplying transposase and a cis-responsive marked element.  (+info)

P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. (3/1876)

The partition system of P1 plasmids is composed of two proteins, ParA and ParB, and a cis-acting site parS. parS is wrapped around ParB and Escherichia coli IHF protein in a higher order nucleoprotein complex called the partition complex. ParA is an ATPase that autoregulates the expression of the par operon and has an essential but unknown function in the partition process. In this study we demonstrate a direct interaction between ParA and the P1 partition complex. The interaction was strictly dependent on ParB and ATP. The consequence of this interaction depended on the ParB concentration. At high ParB levels, ParA was recruited to the partition complex via a ParA-ParB interaction, but at low ParB levels, ParA removed or disassembled ParB from the partition complex. ADP could not support these interactions, but could promote the site-specific DNA binding activity of ParA to parOP, the operator of the par operon. Conversely, ATP could not support a stable interaction of ParA with parOP in this assay. Our data suggest that ParA-ADP is the repressor of the par operon, and ParA-ATP, by interacting with the partition complex, plays a direct role in partition. Therefore, one role of adenine nucleotide binding and hydrolysis by ParA is that of a molecular switch controlling entry into two separate pathways in which ParA plays different roles.  (+info)

Hepatocyte nuclear factor-4 regulates intestinal expression of the guanylin/heat-stable toxin receptor. (4/1876)

We have investigated the regulation of gene transcription in the intestine using the guanylyl cyclase C (GCC) gene as a model. GCC is expressed in crypts and villi in the small intestine and in crypts and surface epithelium of the colon. DNase I footprint, electrophoretic mobility shift assay (EMSA), transient transfection assays, and mutagenesis experiments demonstrated that GCC transcription is regulated by a critical hepatocyte nuclear factor-4 (HNF-4) binding site between bp -46 and -29 and that bp -38 to -36 were essential for binding. Binding of HNF-4 to the GCC promoter was confirmed by competition EMSA and by supershift EMSA. In Caco-2 and T84 cells, which express both GCC and HNF-4, the activity of GCC promoter and/or luciferase reporter plasmids containing 128 or 1973 bp of 5'-flanking sequence was dependent on the HNF-4 binding site in the proximal promoter. In COLO-DM cells, which express neither GCC nor HNF-4, cotransfection of GCC promoter/luciferase reporter plasmids with an HNF-4 expression vector resulted in 23-fold stimulation of the GCC promoter. Mutation of the HNF-4 binding site abolished this transactivation. Transfection of COLO-DM cells with the HNF-4 expression vector stimulated transcription of the endogenous GCC gene as well. These results indicate that HNF-4 is a key regulator of GCC expression in the intestine.  (+info)

Specific binding of the E2 subunit of pyruvate dehydrogenase to the upstream region of Bacillus thuringiensis protoxin genes. (5/1876)

During sporulation, Bacillus thuringiensis produces inclusions comprised of different amounts of several related protoxins, each with a unique specificity profile for insect larvae. A major class of these genes designated cry1 have virtually identical dual overlapping promoters, but the upstream sequences differ. A gel retardation assay was used to purify a potential regulatory protein which bound with different affinities to these sequences in three cry1 genes. It was identified as the E2 subunit of pyruvate dehydrogenase. There was specific competition for binding by homologous gene sequences but not by pUC nor Bacillus subtilis DNA; calf thymus DNA competed at higher concentrations. The B. thuringiensis gene encoding E2 was cloned, and the purified glutathione S-transferase-E2 fusion protein footprinted to a consensus binding sequence within an inverted repeat and to a potential bend region, both sites 200-300 base pairs upstream of the promoters. Mutations of these sites in the cry1A gene resulted in decreased binding of the E2 protein and altered kinetics of expression of a fusion of this regulatory region with the lacZ gene. Recruitment of the E2 subunit as a transcription factor could couple the change in post exponential catabolism to the initiation of protoxin synthesis.  (+info)

Genes for the human mitochondrial trifunctional protein alpha- and beta-subunits are divergently transcribed from a common promoter region. (6/1876)

Human HADHA and HADHB genes encode the subunits of an enzyme complex, the trifunctional protein, involved in mitochondrial beta-oxidation of fatty acids. Both genes are located in the same region of chromosome 2p23. We isolated genomic clones, including 5' flanking regions, for HADHA and HADHB. Sequencing revealed that both of these genes are linked in a head-to-head arrangement on opposite strands and have in common a 350-bp 5' flanking region. The 5' flanking region has bidirectional promoter activity within this region; two cis elements proved critical for the activity. Transcription factor Sp1 functions as an activator for the bidirectional promoter by binding to both elements. Therefore, expression of trifunctional protein subunits are probably coordinately regulated by a common promoter and by Sp1.  (+info)

Hoxa5 gene regulation: A gradient of binding activity to a brachial spinal cord element. (7/1876)

The Hox genes cooperate in providing positional information needed for spatial and temporal patterning of the vertebrate body axis. However, the biological mechanisms behind spatial Hox expression are largely unknown. In transgenic mice, gene fusions between Hoxa5 (previously called Hox-1.3) 5' flanking regions and the lacZ reporter gene show tissue- and time-specific expression in the brachial spinal cord in day 11-13 embryos. A 604-bp regulatory region with enhancer properties directs this spatially specific expression. Fine-detail mapping of the enhancer has identified several elements involved in region-specific expression, including an element required for expression in the brachial spinal cord. Factors in embryonic day 12.5 nuclear extracts bind this element in electrophoretic mobility shift assays (EMSA) and protect three regions from DNase digestion. All three sites contain an AAATAA sequence and mutations at these sites reduce or abolish binding. Furthermore, this element binds specific individual embryonic proteins on a protein blot. The binding activity appears as a gradient along the anterior-posterior axis with two- to threefold higher levels observed in extracts from anterior regions than from posterior regions. In parallel with the EMSA, the proteins on the protein blot also show reduced binding to probes with mutations at the AAATAA sites. Most importantly, transgenic mice carrying Hoxa5/lacZ fusions with the three AAATAA sites mutated either do not express the transgene or have altered transgene expression. The brachial spinal cord element and its binding proteins are likely to be involved in spatial expression of Hoxa5 during development.  (+info)

The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. (8/1876)

The linked niiA and niaD genes of Aspergillus nidulans are transcribed divergently. The expression of these genes is subject to a dual control system. They are induced by nitrate and repressed by ammonium. AreA mediates derepression in the absence of ammonium and NirA supposedly mediates nitrate induction. Out of 10 GATA sites, a central cluster (sites 5-8) is responsible for approximately 80% of the transcriptional activity of the promoter on both genes. We show occupancy in vivo of site 5 by the AreA protein, even under conditions of repression. Sites 5-8 are situated in a pre-set nucleosome-free region. Under conditions of expression, a drastic nucleosomal rearrangement takes place and the positioning of at least five nucleosomes flanking the central region is lost. Remodelling is strictly dependent on the presence of an active areA gene product, and independent from the NirA-specific and essential transcription factor. Thus, nucleosome remodelling is independent from the transcriptional activation of the niiA-niaD promoter. The results presented cast doubts on the role of NirA as the unique transducer of the nitrate induction signal. We demonstrate, for the first time in vivo, that a GATA factor is involved directly in chromatin remodelling.  (+info)