The versatility of paramyxovirus RNA polymerase stuttering. (65/6307)

Paramyxoviruses cotranscriptionally edit their P gene mRNAs by expanding the number of Gs of a conserved AnGn run. Different viruses insert different distributions of guanylates, e.g., Sendai virus inserts a single G, whereas parainfluenza virus type 3 inserts one to six Gs. The sequences conserved at the editing site, as well as the experimental evidence, suggest that the insertions occur by a stuttering process, i.e., by pseudotemplated transcription. The number of times the polymerase "stutters" at the editing site before continuing strictly templated elongation is directed by a cis-acting sequence found upstream of the insertions. We have examined the stuttering process during natural virus infections by constructing recombinant Sendai viruses with mutations in their cis-acting sequences. We found that the template stutter site is precisely determined (C1052) and that a relatively short region (approximately 6 nucleotides) just upstream of the AnGn run can modulate the overall frequency of mRNA editing as well as the distribution of the nucleotide insertions. The positions more proximal to the 5' AnGn run are the most important in this respect. We also provide evidence that the stability of the mRNA/template hybrid plays a determining role in the overall frequency and range of mRNA editing. When the template U run is extended all the way to the stutter site, adenylates rather than guanylates are added at the editing site and their distribution begins to resemble the polyadenylation associated with mRNA 3' end formation by the viral polymerase. Our data suggest how paramyxovirus mRNA editing and polyadenylation are related mechanistically and how editing sites may have evolved from poly(A)-termination sites or vice versa.  (+info)

Optimal replication activity of vesicular stomatitis virus RNA polymerase requires phosphorylation of a residue(s) at carboxy-terminal domain II of its accessory subunit, phosphoprotein P. (66/6307)

The phosphoprotein, P, of vesicular stomatitis virus (VSV) is a key subunit of the viral RNA-dependent RNA polymerase complex. The protein is phosphorylated at multiple sites in two different domains. We recently showed that specific serine and threonine residues within the amino-terminal acidic domain I of P protein must be phosphorylated for in vivo transcription activity, but not for replication activity, of the polymerase complex. To examine the role of phosphorylation of the carboxy-terminal domain II residues of the P protein in transcription and replication, we have used a panel of mutant P proteins in which the phosphate acceptor sites (Ser-226, Ser-227, and Ser-233) were altered to alanines either individually or in various combinations. Analyses of the mutant proteins for their ability to support replication of a VSV minigenomic RNA suggest that phosphorylation of either Ser-226 or Ser-227 is necessary for optimal replication activity of the protein. The mutant protein (P226/227) in which both of these residues were altered to alanines was only about 8% active in replication compared to the wild-type (wt) protein. Substitution of alanine for Ser-233 did not have any adverse effect on replication activity of the protein. In contrast, all the mutant proteins showed activities similar to that of the wt protein in transcription. These results indicate that phosphorylation of the carboxy-terminal domain II residues of P protein are required for optimal replication activity but not for transcription activity. Furthermore, substitution of glutamic acid residues for Ser-226 and Ser-227 resulted in a protein that was only 14% active in replication but almost fully active in transcription. Taken together, these results, along with our earlier studies, suggest that phosphorylation of residues at two different domains in the P protein regulates its activity in transcription and replication of the VSV genome.  (+info)

Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells. (67/6307)

Murine hepatitis virus (MHV) gene 1, the 22-kb polymerase (pol) gene, is first translated into a polyprotein and subsequently processed into multiple proteins by viral autoproteases. Genetic complementation analyses suggest that the majority of the gene 1 products are required for viral RNA synthesis. However, there is no physical evidence supporting the association of any of these products with viral RNA synthesis. We have now performed immunofluorescent-staining studies with four polyclonal antisera to localize various MHV-A59 gene 1 products in virus-infected cells. Immunoprecipitation experiments showed that these antisera detected proteins representing the two papain-like proteases and the 3C-like protease encoded by open reading frame (ORF) 1a, the putative polymerase (p100) and a p35 encoded by ORF 1b, and their precursors. De novo-synthesized viral RNA was labeled with bromouridine triphosphate in lysolecithin-permeabilized MHV-infected cells. Confocal microscopy revealed that all of the viral proteins detected by these antisera colocalized with newly synthesized viral RNA in the cytoplasm, particularly in the perinuclear region of infected cells. Several cysteine and serine protease inhibitors, i.e., E64d, leupeptin, and zinc chloride, inhibited viral RNA synthesis without affecting the localization of viral proteins, suggesting that the processing of the MHV gene 1 polyprotein is tightly associated with viral RNA synthesis. Dual labeling with antibodies specific for cytoplasmic membrane structures showed that MHV gene 1 products and RNA colocalized with the Golgi apparatus in HeLa cells. However, in murine 17CL-1 cells, the viral proteins and viral RNA did not colocalize with the Golgi apparatus but, instead, partially colocalized with the endoplasmic reticulum. Our results provide clear physical evidence that several MHV gene 1 products, including the proteases and the polymerase, are associated with the viral RNA replication-transcription machinery, which may localize to different membrane structures in different cell lines.  (+info)

Histidine codons appended to the gene encoding the RPO22 subunit of vaccinia virus RNA polymerase facilitate the isolation and purification of functional enzyme and associated proteins from virus-infected cells. (68/6307)

Vaccinia virus encodes a eukaryotic-like RNA polymerase composed of two large and six small subunit protein species. A replication-competent virus with 10 histidine codons added to the single endogenous J4R open reading frame was constructed. The altered migration of the 22-kDa subunit of RNA polymerase on SDS-polyacrylamide gel electrophoresis confirmed that J4R encoded the RPO22 subunit and that the mutant virus was genetically stable. The histidine-tagged RNA polymerase bound quantitatively to metal-affinity resins and was eluted in an active form upon addition of imidazole. Glycerol gradient sedimentation of the eluted fraction indicated that most of the RPO22 in infected cells is associated with RNA polymerase. Using stringent washing conditions, metal-affinity chromatography resulted in a several hundred-fold increase in RNA-polymerase-specific activity, and substantially pure enzyme was obtained with an additional conventional chromatography step. When mild conditions were used for washing the metal-affinity resin, the vaccinia virus-encoded capping enzyme, early transcription factor, and nucleoside triphosphate phosphohydrolase I specifically co-eluted with the tagged RNA polymerase, consistent with their physical association. The ability to selectively bind RNA polymerase to an affinity column provided a simple and rapid method of concentrating and purifying active enzyme and protein complexes.  (+info)

Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D. (69/6307)

The regulator of sigma D (Rsd) was identified as an RNA polymerase sigma70-associated protein in stationary-phase Escherichia coli with the inhibitory activity of sigma70-dependent transcription in vitro (M. Jishage and A. Ishihama, Proc. Natl. Acad. Sci. USA 95:4953-4958, 1998). Primer extension analysis of rsd mRNA indicated the presence of two promoters, sigmaS-dependent P1 and sigma70-dependent P2 with the gearbox sequence. To get insight into the in vivo role of Rsd, the expression of a reporter gene fused to either the sigma70- or sigmaS-dependent promoter was analyzed in the absence of Rsd or the presence of overexpressed Rsd. In the rsd null mutant, the sigma70- and sigmaS-dependent gene expression was increased or decreased, respectively. On the other hand, the sigma70- or sigmaS-dependent transcription was reduced or enhanced, respectively, after overexpression of Rsd. The repression of the sigmaS-dependent transcription in the rsd mutant is overcome by increased production of the sigmaS subunit. Together these observations support the prediction that Rsd is involved in replacement of the RNA polymerase sigma subunit from sigma70 to sigmaS during the transition from exponential growth to the stationary phase.  (+info)

Fused and overlapping rpoB and rpoC genes in Helicobacters, Campylobacters, and related bacteria. (70/6307)

The genes coding for the beta (rpoB) and beta' (rpoC) subunits of RNA polymerase are fused in the gastric pathogen Helicobacter pylori but separate in other taxonomic groups. To better understand how the unique fused structure evolved, we determined DNA sequences at and around the rpoB-rpoC junction in 10 gastric and nongastric species of Helicobacter and in members of the related genera Wolinella, Arcobacter, Sulfurospirillum, and Campylobacter. We found the fusion to be specific to Helicobacter and Wolinella genera; rpoB and rpoC overlap in the other genera. The fusion may have arisen by a frameshift mutation at the site of rpoB and rpoC overlap. Loss of good Shine-Dalgarno sequences might then have fixed the fusion in the Helicobacteraceae, even if fusion itself did not confer a selective advantage.  (+info)

Activation of Escherichia coli leuV transcription by FIS. (71/6307)

The transcription factor FIS has been implicated in the regulation of several stable RNA promoters, including that for the major tRNALeu species in Escherichia coli, tRNA1Leu. However, no evidence for direct involvement of FIS in tRNA1Leu expression has been reported. We show here that FIS binds to a site upstream of the leuV promoter (centered at -71) and that it directly stimulates leuV transcription in vitro. A mutation in the FIS binding site reduces transcription from a leuV promoter in strains containing FIS but has no effect on transcription in strains lacking FIS, indicating that FIS contributes to leuV expression in vivo. We also find that RNA polymerase forms an unusual heparin-sensitive complex with the leuV promoter, having a downstream protection boundary of approximately -7, and that the first two nucleotides of the transcript, GTP and UTP, are required for formation of a heparin-stable complex that extends downstream of the transcription start site. These studies have implications for the regulation of leuV transcription.  (+info)

Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. (72/6307)

The phospholipase C gene (plc) of Clostridium perfringens possesses three phased A-tracts forming bent DNA upstream of the promoter. An in vitro transcription assay involving C.perfringens RNA polymerase (RNAP) showed that the phased A-tracts have a stimulatory effect on the plc promoter, and that the effect is proportional to the number of A-tracts, and more prominent at lower temperature. A gel retardation assay and hydroxyl radical footprinting revealed that the phased A-tracts facilitate the formation of the RNAP-plc promoter complex through extension of the contact region. The upstream (UP) element of the Escherichia coli rrnB P1 promoter stimulated the downstream promoter activity temperature independently, differing from the phased A-tracts. When the UP element was placed upstream of the plc promoter, low temperature-dependent stimulation was observed, although this effect was less prominent than that of the phased A-tracts. These results suggest that both the phased A-tracts and UP element cause low temperature-dependent activation of the plc promoter through a similar mechanism, and that the more efficient low temperature-dependent activation by the phased A-tracts may be due to an increase in the bending angle at a lower temperature.  (+info)