Action of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver. (1/4762)

The effects of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver were investigated. The enzyme was isolated from the nuclear fraction essentially according to the method of Baril et al.; it was characterized as the alpha polymerase on the basis of its response to synthetic templates and its inhibition with N-ethylmaleimide. Although polycytidylic acid had no effect on the DNA polymerase alpha either as a template or as an inhibitor, partially thiolated polycytidylic acid (MPC) was found to be a potent inhibitor, its activity being directly related to its extent of thiolation (percentage of 5-mercaptocytidylate units in the polymer). In comparison, the DNA polymerase beta which was purified from normal rat liver nuclear fraction, was much less sensitive to inhibition by MPC. Analysis of the inhibition of the alpha polymerase by the method of Lineweaver and Burk showed that the inhibitory action of MPC was competitively reversible with the DNA template, but the binding of the 7.2%-thiolated MPC to the enzyme was much stronger than that of the template (Ki/Km less than 0.03). Polyuridylic acid as such showed some inhibitory activity which increased on partial thiolation, but the 8.4%-thiolated polyuridylic acid was less active than the 7.2% MPC. When MPC was annealed with polyinosinic acid, it lost 80% of its inhibitory activity in the double-stranded configuration. However, 1 to 2%-thiolated DNA isolates were significantly more potent inhibitors than were comparable (1.2%-thiolated) MPC and showed competitive reversibility with the unmodified (but "activated") DNA template. These results indicate that the inhibitory activities of partially thiolated polynucleotides depend not only on the percentage of 5-mercapto groups but also on the configuration, base composition, and other specific structural properties.  (+info)

Probing interactions between HIV-1 reverse transcriptase and its DNA substrate with backbone-modified nucleotides. (2/4762)

BACKGROUND: To gain a molecular understanding of a biochemical process, the crystal structure of enzymes that catalyze the reactions involved is extremely helpful. Often the question arises whether conformations obtained in this way appropriately reflect the reactivity of enzymes, however. Rates that characterize transitions are therefore compulsory experiments for the elucidation of the reaction mechanism. Such experiments have been performed for the reverse transcriptase of the type 1 human immunodeficiency virus (HIV-1 RT). RESULTS: We have developed a methodology to monitor the interplay between HIV-1 RT and its DNA substrate. To probe the protein-DNA interactions, the sugar backbone of one nucleotide was modified by a substituent that influenced the efficiency of the chain elongation in a characteristic way. We found that strand elongation after incorporation of the modified nucleotide follows a discontinuous efficiency for the first four nucleotides. The reaction efficiencies could be correlated with the distance between the sugar substituent and the enzyme. The model was confirmed by kinetic experiments with HIV-1 RT mutants. CONCLUSIONS: Experiments with HIV-1 RT demonstrate that strand-elongation efficiency using a modified nucleotide correlates well with distances between the DNA substrate and the enzyme. The functional group at the modified nucleotides acts as an 'antenna' for steric interactions that changes the optimal transition state. Kinetic experiments in combination with backbone-modified nucleotides can therefore be used to gain structural information about reverse transcriptases and DNA polymerases.  (+info)

Novel endotheliotropic herpesviruses fatal for Asian and African elephants. (3/4762)

A highly fatal hemorrhagic disease has been identified in 10 young Asian and African elephants at North American zoos. In the affected animals there was ultrastructural evidence for herpesvirus-like particles in endothelial cells of the heart, liver, and tongue. Consensus primer polymerase chain reaction combined with sequencing yielded molecular evidence that confirmed the presence of two novel but related herpesviruses associated with the disease, one in Asian elephants and another in African elephants. Otherwise healthy African elephants with external herpetic lesions yielded herpesvirus sequences identical to that found in Asian elephants with endothelial disease. This finding suggests that the Asian elephant deaths were caused by cross-species infection with a herpesvirus that is naturally latent in, but normally not lethal to, African elephants. A reciprocal relationship may exist for the African elephant disease.  (+info)

Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. (4/4762)

Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.  (+info)

Nuclear location of mammalian DNA polymerase activities. (5/4762)

Nuclei were isolated from monolayer cultures of mouse and human cells using a nonaqueous procedure of cell fractionation in which lyophilized cells were homogenized and centrifuged in 100% glycerol. In previous work we have shown that the nuclear pellet and cytoplasmic supernatant fraction contained 10% or less of the nucleic acids characteristic of the other cell fraction. Aqueous extracts made from fresh cultures and from nonaqueous material at each step of the fractionation procedure were assayed fro DNA polymerase activity. Activities were normalized to DNA contents of extracted material. Specific activity was preserved quantitatively through freezing and drying the cells, but was found to be unstable in glycerol suspensions with approximate half-lives and 1 h at 23 degrees and 4 h at 0-4 degrees. Activities were relatively stable at -25 degrees, however, so that by homogenizing only 15 min at 4 degrees and centrifuging at -25 degrees we preserved approximately 85% of the specific activity of fresh cultures in the nonaqueous nuclear fraction. Sedimentation analyses showed that the nuclear fraction contained both DNA polymerase-alpha and-beta in approximately the proportions expected if all polymerase activities were confined to the nucleus in living cells. DNA polymerase-alpha was found to be more unstable in glycerol suspensions than DNA polymerase-beta. Nuclear location of both activities was found in exponential cultures and in 3T3 mouse cultures synchronized in the G1 and S phases of the cell division cycle. We found no evidence for cytoplasmic factors affecting nuclear polymerase activities. We have concluded that the two major DNA polymerases are nuclear although one, DNA polymerase-alpha, frequently is present as a weakly bound nuclear protein.  (+info)

Herpetic keratitis. Proctor Lecture. (6/4762)

Although much needs to be learned about the serious clinical problem of herpes infection of the cornea, we have come a long way. We now have effective topical antiviral drugs. We have animal models which, with a high degree of reliability, clearly predict the effect to be expected clinically in man, as well as the toxicity. We have systemically active drugs and the potential of getting highly active, potent, completely selective drugs, with the possibility that perhaps the source of viral reinfection can be eradicated. The biology of recurrent herpes and stromal disease is gradually being understood, and this understanding may result in new and better therapy of this devastating clinical disease.  (+info)

Comparison of synonymous codon distribution patterns of bacteriophage and host genomes. (7/4762)

Synonymous codon usage patterns of bacteriophage and host genomes were compared. Two indexes, G + C base composition of a gene (fgc) and fraction of translationally optimal codons of the gene (fop), were used in the comparison. Synonymous codon usage data of all the coding sequences on a genome are represented as a cloud of points in the plane of fop vs. fgc. The Escherichia coli coding sequences appear to exhibit two phases, "rising" and "flat" phases. Genes that are essential for survival and are thought to be native are located in the flat phase, while foreign-type genes from prophages and transposons are found in the rising phase with a slope of nearly unity in the fgc vs. fop plot. Synonymous codon distribution patterns of genes from temperate phages P4, P2, N15 and lambda are similar to the pattern of E. coli rising phase genes. In contrast, genes from the virulent phage T7 or T4, for which a phage-encoded DNA polymerase is identified, fall in a linear curve with a slope of nearly zero in the fop vs. fgc plane. These results may suggest that the G + C contents for T7, T4 and E. coli flat phase genes are subject to the directional mutation pressure and are determined by the DNA polymerase used in the replication. There is significant variation in the fop values of the phage genes, suggesting an adjustment to gene expression level. Similar analyses of codon distribution patterns were carried out for Haemophilus influenzae, Bacillus subtilis, Mycobacterium tuberculosis and their phages with complete genomic sequences available.  (+info)

The topoisomerase-related function gene TRF4 affects cellular sensitivity to the antitumor agent camptothecin. (8/4762)

Camptothecin is an antitumor agent that kills cells by converting DNA topoisomerase I into a DNA-damaging poison. Although camptothecin derivatives are now being used to treat tumors in a variety of clinical protocols, the cellular factors that influence sensitivity to the drug are only beginning to be understood. We report here that two genes required for sister chromatid cohesion, TRF4 and MCD1/SCC1, are also required to repair camptothecin-mediated damage to DNA. The hypersensitivity to camptothecin in the trf4 mutant does not result from elevated expression of DNA topoisomerase I. We show that Trf4 is a nuclear protein whose expression is cell cycle-regulated at a post-transcriptional level. Suppression of camptothecin hypersensitivity in the trf4 mutant by gene overexpression resulted in the isolation of three genes: another member of the TRF4 gene family, TRF5, and two genes that may influence higher order chromosome structure, ZDS1 and ZDS2. We have isolated and sequenced two human TRF4 family members, hTRF4-1 and hTRF4-2. The hTRF4-1 gene maps to chromosome 5p15, a region of frequent copy number alteration in several tumor types. The evolutionary conservation of TRF4 suggests that it may also influence mammalian cell sensitivity to camptothecin.  (+info)