(1/448) Structural and kinetic properties of adenylyl sulfate reductase from Catharanthus roseus cell cultures.

A cDNA encoding a plant-type APS reductase was isolated from an axenic cell suspension culture of Catharanthus roseus (Genbank/EMBL-databank accession number U63784). The open reading frame of 1392 bp (termed par) encoded for a protein (Mr=51394) consisting of a N-terminal transit peptide, a PAPS reductase-like core and a C-terminal extension with homology to the thioredoxin-like domain of protein disulfide isomerase. The APS reductase precursor was imported into pea chloroplasts in vitro and processed to give a mature protein of approximately 45 kDa. The homologous protein from pea chloroplast stroma was detected using anti:par polyclonal antibodies. To investigate the catalytical function of the different domains deleted par proteins were purified. ParDelta1 lacking the transit sequence liberated sulfite from APS (Km 2.5+/-0.23 microM) in vitro with glutathione (Km 3+/-0.64 mM) as reductant (Vmax 2.6+/-0.14 U mg-1, molecular activity 126 min-1). ParDelta2 lacking the transit sequence and C-terminal domain had to be reconstituted with exogenous thioredoxin as reductant (Km 15. 3+/-1.27 microM, Vmax 0.6+/-0.014 U mg-1). Glutaredoxin, GSH or DTT were ineffective substitutes. ParDelta1 (35.4%) and parDelta2 (21. 8%) both exhibited insulin reductase activity comparable to thioredoxin (100%). Protein disulfide isomerase activity was observed for parDelta1.  (+info)

(2/448) Strand asymmetry and codon usage bias in the chloroplast genome of Euglena gracilis.

It is shown that the two strands of the chloroplast genome from Euglena gracilis are asymmetric with regards to nucleotide composition. This asymmetry switches at both the origin of replication and a location that is halfway around the circular genome from the origin. In both halves of the genome the leading strand is G+T-rich, having a bias toward G over C and T over A, and the lagging strand is A+C-rich. This asymmetry is probably the result of a difference in mutation dynamics between the leading and lagging strands. In addition to composition asymmetry, the two strands differ with regards to coding content. In both halves of the genome the vast majority of genes are coded by the leading strand. These two aspects of strand asymmetry are then applied to a statistical test for selection on codon usage. The results indicate that selection on codon usage is limited to genes on the leading strand; no gene on the A+C-rich lagging strand shows evidence for selection, suggesting that highly expressed genes are coded predominantly on the strand of DNA that is the leading strand during replication. On the basis of these observations it is proposed that the coding strand bias is generated by selection to code highly expressed genes on the leading strand to coordinate the direction of replication and transcription, thereby increasing the potential rate of both reactions.  (+info)

(3/448) The active digestion of uniparental chloroplast DNA in a single zygote of Chlamydomonas reinhardtii is revealed by using the optical tweezer.

The non-Mendelian inheritance of organelle genes is a phenomenon common to almost all eukaryotes, and in the isogamous alga Chlamydomonas reinhardtii, chloroplast (cp) genes are transmitted from the mating type positive (mt(+)) parent. In this study, the preferential disappearance of the fluorescent cp nucleoids of the mating type negative (mt(-)) parent was observed in living young zygotes. To study the change in cpDNA molecules during the preferential disappearance, the cpDNA of mt(+) or mt(-) origin was labeled separately with bacterial aadA gene sequences. Then, a single zygote with or without cp nucleoids was isolated under direct observation by using optical tweezers and investigated by nested PCR analysis of the aadA sequences. This demonstrated that cpDNA molecules are digested completely during the preferential disappearance of mt(-) cp nucleoids within 10 min, whereas mt(+) cpDNA and mitochondrial DNA are protected from the digestion. These results indicate that the non-Mendelian transmission pattern of organelle genes is determined immediately after zygote formation.  (+info)

(4/448) Chloroplast ribonucleoproteins are associated with both mRNAs and intron-containing precursor tRNAs.

Tobacco chloroplasts possess five conserved ribonucleoproteins (cpRNPs). To elucidate the function of cpRNPs we analyzed their localization and target nucleic acid molecules in chloroplasts. Immunoprecipitation of the stromal extract and Northern analysis revealed that cpRNPs are associated in vivo with not only various species of chloroplast mRNAs but also intron-containing precursor (pre-) tRNAs. This observation strongly suggests that cpRNPs are involved in RNA processing, including mRNA stability and pre-tRNA splicing.  (+info)

(5/448) Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genomes of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analyses.

We sequenced the first ca. 900 bp of the 5'-trnL(UAA)-trnV(UAC)/ndhJ region of the chloroplast DNA of different Microseris accessions in order to resolve homoplasious length variation detected in the trnL(UAA)-trnF(GAA) region. We found two to four tandemly repeated trnF genes in the species of Microseris (Asteraceae, Lactuceae) and two in their sister genus Uropappus. Sequences indicated nonhomologous transitions between two, three, and four trnF genes in different Microseris taxa. Independent origins of similar trnF copy numbers were inferred from a chloroplast phylogeny of Microseris. The taxa involved grow on separate continents, supporting parallel origins of similar length variants. The changes in trnF copy numbers were best explained by interchromosomal recombination with unequal crossing over. The 5' copies of the repeats showed the highest sequence conservation, suggesting that these copies are likely to be functional trnF genes, whereas the other ones probably represent pseudogenes. Our results show that length polymorphisms accumulate once a duplicated sequence has become incorporated. Due to parallel gains of similar trnF copy numbers, homoplasious length variation was introduced into the data matrix. The data demonstrate that length polymorphisms cannot be used as indicators for phylogenetic distance unless they can be analyzed at the sequence level.  (+info)

(6/448) Protease activity of CND41, a chloroplast nucleoid DNA-binding protein, isolated from cultured tobacco cells.

CND41 is a 41 kDa DNA-binding protein isolated from chloroplast nucleoids of cultured tobacco cells. The presence of the active domain of aspartic protease in the deduced amino acid sequence of CND41 suggests that it has proteolytic activity. To confirm this, CND41 was highly purified from cultured tobacco cells and its proteolytic activity was characterized with fluorescein isothiocyanate-labeled hemoglobin as the substrate. The purified CND41 had strong proteolytic activity at an acidic pH (pH 2-4). This activity was inhibited by various chemicals, including the nucleoside triphosphates, NADPH, Fe(3+) and sodium dodecyl sulfate.  (+info)

(7/448) Cryptosporidium parvum appears to lack a plastid genome.

Surprisingly, unlike most Apicomplexa, Cryptosporidium parvum appears to lack a plastid genome. Primers based upon the highly conserved plastid small- or large-subunit rRNA (SSU/LSU rRNA) and the tufA-tRNAPhe genes of other members of the phylum Apicomplexa failed to amplify products from intracellular stages of C. parvum, whereas products were obtained from the plastid-containing apicomplexans Eimeria bovis and Toxoplasma gondii, as well as the plants Allium stellatum and Spinacia oleracea. Dot-blot hybridization of sporozoite genomic DNA (gDNA) supported these PCR results. A T. gondii plastid-specific set of probes containing SSU/LSU rRNA and tufA-tRNA(Phe) genes strongly hybridized to gDNA from a diverse group of plastid-containing organisms including three Apicomplexa, two plants, and Euglena gracilis, but not to those without this organelle including C. parvum, three kinetoplastids, the yeast Saccharomyces cerevisiae, mammals and the eubacterium Escherichia coli. Since the origin of the plastid in other apicomplexans is postulated to be the result of a secondary symbiogenesis of either a red or a green alga, the most parsimonious explanation for its absence in C. parvum is that it has been secondarily lost. If confirmed, this would indicate an alternative evolutionary fate for this organelle in one member of the Apicomplexa. It also suggests that unlike the situation with other diseases caused by members of the Apicomplexa, drug development against cryptosporidiosis targeting a plastid genome or metabolic pathways associated with it may not be useful.  (+info)

(8/448) Molecular analysis of plant migration and refugia in the Arctic.

The arctic flora is thought to have originated during the late Tertiary, approximately 3 million years ago. Plant migration routes during colonization of the Arctic are currently unknown, and uncertainty remains over where arctic plants survived Pleistocene glaciations. A phylogenetic analysis of chloroplast DNA variation in the purple saxifrage (Saxifraga oppositifolia) indicates that this plant first occurred in the Arctic in western Beringia before it migrated east and west to achieve a circumpolar distribution. The geographical distribution of chloroplast DNA variation in the species supports the hypothesis that, during Pleistocene glaciations, some plant refugia were located in the Arctic as well as at more southern latitudes.  (+info)