Granulomatous pneumonia caused by Pythium insidiosum in a central American jaguar, Panthera onca. (1/106)

A 7-month-old, male jaguar presented with dyspnea and leukocytosis unresponsive to antibiotic therapy. Radiographs revealed unilateral pulmonary consolidation. An exploratory thoracotomy was performed, and the left lung, which contained a large multilobular mass with extensive fibrosis and numerous caseonecrotic foci, was removed. Microscopically, eosinophilic granulomatous inflammation surrounded broad (4.4-8.3 microm) rarely septate hyphae. A diagnosis of Pythium insidiosum infection was confirmed by immunohistochemistry, immunoblot serology, culture, and polymerase chain reaction. Dyspnea recurred despite treatment, and the animal succumbed 3 weeks after surgery. Necropsy findings indicated that death resulted from occlusion of the right main stem bronchus by a fungal granuloma. The oomycete P. insidiosum typically causes granulomatous disease of the skin or gastrointestinal tract in animals and arteritis, keratitis, or cellulitis in humans. Infection is uncommon in felines, and pulmonary involvement is rare. This report details the first case of P. insidiosum infection in an exotic felid and provides the first description of primary pulmonary pythiosis in any species.  (+info)

The Diatom EST Database. (2/106)

The Diatom EST database provides integrated access to expressed sequence tag (EST) data from two eukaryotic microalgae of the class Bacillariophyceae, Phaeodactylum tricornutum and Thalassiosira pseudonana. The database currently contains sequences of close to 30,000 ESTs organized into PtDB, the P.tricornutum EST database, and TpDB, the T.pseudonana EST database. The EST sequences were clustered and assembled into a non-redundant set for each organism, and these non-redundant sequences were then subjected to automated annotation using similarity searches against protein and domain databases. EST sequences, clusters of contiguous sequences, their annotation and analysis with reference to the publicly available databases, and a codon usage table derived from a subset of sequences from PtDB and TpDB can all be accessed in the Diatom EST Database. The underlying RDBMS enables queries over the raw and annotated EST data and retrieval of information through a user-friendly web interface, with options to perform keyword and BLAST searches. The EST data can also be retrieved based on Pfam domains, Cluster of Orthologous Groups (COG) and Gene Ontologies (GO) assigned to them by similarity searches. The Database is available at http://avesthagen.sznbowler.com.  (+info)

Structure and expression of the ornithine decarboxylase gene of Chlamydomonas reinhardtii. (3/106)

A cDNA was cloned encoding ornithine decarboxylase (ODC) of the unicellular green alga Chlamydomonas reinhardtii. The polypeptide consists of 396 amino acid residues with 35-37% sequence identity to other eukaryotic ODCs. As indicated by the phylogenetic tree calculated by neighbour joining analysis, the Chlamydomonas ODC has the same evolutionary distances to the ODCs of higher plants and mammalians. The Chlamydomonas ODC gene contains three introns of 222, 133, and 129bp, respectively. As revealed by Northern-blot analyses, expression of the Chlamydomonas ODC gene is neither altered throughout the vegetative cell cycle nor modulated by exogenous polyamines.  (+info)

Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. (4/106)

The MADS-box genes of land plants are extensively diverged to form a superfamily and are important in various aspects of development including the specification of floral organs as homeotic selector genes. The closest relatives of land plants are the freshwater green algae charophyceans. To study the origin and evolution of land plant MADS-box genes, we characterized these genes in three charophycean green algae: the stonewort Chara globularis, the coleochaete Coleochaete scutata, and the desmid Closterium peracerosum-strigosum-littorale complex. Phylogenetic analyses suggested that MADS-box genes diverged extensively in the land plant lineage after the separation of charophyceans from land plants. The stonewort C. globularis mRNA was specifically detected in the oogonium and antheridium together with the egg and spermatozoid during their differentiation. The expression of the C. peracerosum-strigosum-littorale-complex gene increased when vegetative cells began to differentiate into gametangial cells and decreased after fertilization. These expression patterns suggest that the precursors of land plant MADS-box genes originally functioned in haploid reproductive cell differentiation and that the haploid MADS-box genes were recruited into a diploid generation during the evolution of land plants.  (+info)

Cell cycle-regulated, microtubule-independent organelle division in Cyanidioschyzon merolae. (5/106)

Mitochondrial and chloroplast division controls the number and morphology of organelles, but how cells regulate organelle division remains to be clarified. Here, we show that each step of mitochondrial and chloroplast division is closely associated with the cell cycle in Cyanidioschyzon merolae. Electron microscopy revealed direct associations between the spindle pole bodies and mitochondria, suggesting that mitochondrial distribution is physically coupled with mitosis. Interconnected organelles were fractionated under microtubule-stabilizing condition. Immunoblotting analysis revealed that the protein levels required for organelle division increased before microtubule changes upon cell division, indicating that regulation of protein expression for organelle division is distinct from that of cytokinesis. At the mitochondrial division site, dynamin stuck to one of the divided mitochondria and was spatially associated with the tip of a microtubule stretching from the other one. Inhibition of microtubule organization, proteasome activity or DNA synthesis, respectively, induced arrested cells with divided but shrunk mitochondria, with divided and segregated mitochondria, or with incomplete mitochondrial division restrained at the final severance, and repetitive chloroplast division. The results indicated that mitochondrial morphology and segregation but not division depend on microtubules and implied that the division processes of the two organelles are regulated at distinct checkpoints.  (+info)

Differences in intensity and specificity of hypersensitive response induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. (6/106)

Elicitins form a family of structurally related proteins that induce the hypersensitive response (HR) in plants, particularly Nicotiana spp. The elicitin family is composed of several classes. Most species of the plant-pathogenic oomycete genus Phytophthora produce the well-characterized 10-kDa canonical elicitins (class I), such as INF1 of the potato and tomato pathogen Phytophthora infestans. Two genes, inf2A and inf2B, encoding a distinct class (class III) of elicitin-like proteins, also occur in P. infestans. Unlike secreted class I elicitins, class III elicitins are thought to be cell-surface-anchored polypeptides. Molecular characterization of the inf2 genes indicated that they are widespread in Phytophthora spp. and occur as a small gene family. In addition, Southern blot and Northern blot hybridizations using gene-specific probes showed that inf2A and inf2B genes and transcripts can be detected in 17 different P. infestans isolates. Functional secreted expression in plant cells of the elicitin domain of the infl and inf2 genes was conducted using a binary Potato virus X (PVX) vector (agroinfection) and Agrobacterium tumefaciens transient transformation assays (agroinfiltration), and resulted in HR-like necrotic symptoms and induction of defense response genes in tobacco. However, comparative analyses of elicitor activity of INF1, INF2A, and INF2B revealed significant differences in intensity, specificity, and consistency of HR induction. Whereas INF1 induced the HR in Nicotiana benthamiana, INF2A induced weak symptoms and INF2B induced no symptoms on this plant. Nonetheless, similar to INF1, HR induction by INF2A in N. benthamiana required the ubiquitin ligase-associated protein SGT1. Overall, these results suggest that variation in the resistance of Nicotiana spp. to P. infestans is shadowed by variation in the response to INF elicitins. The ability of tobacco, but not N. benthamiana, to respond to INF2B could explain differences in resistance to P. infestans observed for these two species.  (+info)

Portrait of a species: Chlamydomonas reinhardtii. (7/106)

Chlamydomonas reinhardtii, the first alga subject to a genome project, has been the object of numerous morphological, physiological, and genetic studies. The organism has two genetically determined mating types (plus and minus) and all stages of the simple life cycle can be evoked in culture. In the nearly 60 years since the first standard laboratory strains were isolated, numerous crosses and exchanges among laboratories have led to some confusion concerning strain genealogy. Here we use analyses of the nuclear internal transcribed spacer regions and other genetic traits to resolve these issues, correctly identify strains currently available, and analyze phylogenetic relationships with all other available similar chlamydomonad types. The presence of a 10-bp indel in ITS2 in some but not all copies of the nuclear ribosomal cistrons of an individual organism, and the changing ratios of these in crosses, provide a tool to investigate mechanisms of concerted evolution. The standard C. reinhardtii strains, plus C. smithii +, plus the new eastern North American C. reinhardtii isolates, comprise one morphological species, one biological species of high sexual intercompatibility, and essentially identical ITS sequences (except the tip of helix I of ITS2). However, variant RFLP patterns characterize strains from each geographic site.  (+info)

A high frequency of overlapping gene expression in compacted eukaryotic genomes. (8/106)

The gene density of eukaryotic nuclear genomes is generally low relative to prokaryotes, but several eukaryotic lineages (many parasites or endosymbionts) have independently evolved highly compacted, gene-dense genomes. The best studied of these are the microsporidia, highly adapted fungal parasites, and the nucleomorphs, relict nuclei of endosymbiotic algae found in cryptomonads and chlorarachniophytes. These systems are now models for the effects of compaction on the form and dynamics of the nuclear genome. Here we report a large-scale investigation of gene expression from compacted eukaryotic genomes. We have conducted EST surveys of the microsporidian Antonospora locustae and nucleomorphs of the cryptomonad Guillardia theta and the chlorarachniophyte Bigelowiella natans. In all three systems we find a high frequency of mRNA molecules that encode sequence from more than one gene. There is no bias for these genes to be on the same strand, so it is unlikely that these mRNAs represent operons. Instead, compaction appears to have reduced the intergenic regions to such an extent that control elements like promoters and terminators have been forced into or beyond adjacent genes, resulting in long untranslated regions that encode other genes. Normally, transcriptional overlap can interfere with expression of a gene, but these genomes cope with high frequencies of overlap and with termination signals within expressed genes. These findings also point to serious practical difficulties in studying expression in compacted genomes, because many techniques, such as arrays or serial analysis of gene expression will be misleading.  (+info)