Loss of DNA mismatch repair facilitates reactivation of a reporter plasmid damaged by cisplatin. (49/2171)

In addition to recognizing and repairing mismatched bases in DNA, the mismatch repair (MMR) system also detects cisplatin DNA adducts and loss of MMR results in resistance to cisplatin. A comparison was made of the ability of MMR-proficient and -deficient cells to remove cisplatin adducts from their genome and to reactivate a transiently transfected plasmid that had previously been inactivated by cisplatin to express the firefly luciferase enzyme. MMR deficiency due to loss of hMLH1 function did not change the extent of platinum (Pt) accumulation or kinetics of removal from total cellular DNA. However, MMR-deficient cells, lacking either hMLH1 or hMSH2, generated twofold more luciferase activity from a cisplatin-damaged reporter plasmid than their MMR-proficient counterparts. Thus, detection of the cisplatin adducts by the MMR system reduced the efficiency of reactivation of the damaged luciferase gene compared to cells lacking this detector. The twofold reduction in reactivation efficiency was of the same order of magnitude as the difference in cisplatin sensitivity between the MMR-proficient and -deficient cells. We conclude that although MMR-proficient and -deficient cells remove Pt from their genome at equal rates, the loss of a functional MMR system facilitates the reactivation of a cisplatin-damaged reporter gene.  (+info)

Mechanisms of synergism between cisplatin and gemcitabine in ovarian and non-small-cell lung cancer cell lines. (50/2171)

2',2'-Difluorodeoxycytidine (gemcitabine, dFdC) and cis-diammine-dichloroplatinum (cisplatin, CDDP) are active agents against ovarian cancer and non-small-cell lung cancer (NSCLC). CDDP acts by formation of platinum (Pt)-DNA adducts; dFdC by dFdCTP incorporation into DNA, subsequently leading to inhibition of exonuclease and DNA repair. Previously, synergism between both compounds was found in several human and murine cancer cell lines when cells were treated with these drugs in a constant ratio. In the present study we used different combinations of both drugs (one drug at its IC25 and the other in a concentration range) in the human ovarian cancer cell line A2780, its CDDP-resistant variant ADDP, its dFdC-resistant variant AG6000 and two NSCLC cell lines, H322 (human) and Lewis lung (LL) (murine). Cells were exposed for 4, 24 and 72 h with a total culture time of 96 h, and possible synergism was evaluated by median drug effect analysis by calculating a combination index (CI; CI < 1 indicates synergism). With CDDP at its IC25, the average CIs calculated at the IC50, IC75 IC90 and IC95 after 4, 24 and 72 h of exposure were < 1 for all cell lines, indicating synergism, except for the CI after 4 h exposure in the LL cell line which showed an additive effect. With dFdC at its IC25, the CIs for the combination with CDDP after 24 h were < 1 in all cell lines, except for the CIs after 4 h exposure in the LL and H322 cell lines which showed an additive effect. At 72 h exposure all CIs were < 1. CDDP did not significantly affect dFdCTP accumulation in all cell lines. CDDP increased dFdC incorporation into both DNA and RNA of the A2780 cell lines 33- and 79-fold (P < 0.01) respectively, and tended to increase the dFdC incorporation into RNA in all cell lines. In the AG6000 and LL cell lines, CDDP and dFdC induced > 25% more DNA strand breaks (DSB) than each drug alone; however, in the other cell lines no effect, or even a decrease in DSB, was observed. dFdC increased the cellular Pt accumulation after 24 h incubation only in the ADDP cell line. However, dFdC did enhance the Pt-DNA adduct formation in the A2780, AG6000, ADDP and LL cell lines (1.6-, 1.4-, 2.9- and 1.6-fold respectively). This increase in Pt-DNA adduct formation seems to be related to the incorporation of dFdC into DNA (r = 0.91). No increase in DNA platination was found in the H322 cell line. dFdC only increased Pt-DNA adduct retention in the A2780 and LL cell lines, but decreased the Pt-DNA adduct retention in the AG6000 cell line. In conclusion, the synergism between dFdC and CDDP appears to be mainly due to an increase in Pt-DNA adduct formation possibly related to changes in DNA due to dFdC incorporation into DNA.  (+info)

XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. (51/2171)

Hereditary genetic defects in DNA repair lead to increased risk of cancer. Polymorphisms in several DNA repair genes have been identified; however, the impact on repair phenotype has not been elucidated. We explored the relationship between polymorphisms in the DNA repair enzyme, XRCC1 (codons 194, 280, and 399), and genotoxic end points measured in two populations: (a) placental aflatoxin B1 DNA (AFB1-DNA) adducts in a group of Taiwanese maternity subjects (n = 120); and (b) somatic glycophorin A (GPA) variants in erythrocytes from a group of North Carolina smokers and nonsmokers (n = 59). AFB1-DNA adducts were measured by ELISA, and erythrocyte GPA variant frequency (NN and NO) was assessed in MN heterozygotes with a flow cytometric assay. XRCC1 genotypes were identified by PCR-RFLPs. The XRCC1 399Gln allele was significantly associated with higher levels of both AFB1-DNA adducts and GPA NN mutations. Individuals with the 399Gln allele were at risk for detectable adducts (odds ratio, 2.4; 95% confidence interval, 1.1-5.4; P = 0.03). GPA NN variant frequency was significantly higher in 399Gln homozygotes (19.6 x 10(-6)) than in Gln/Arg heterozygotes (11.4 x 10(-6); P < 0.05) or Arg/Arg homozygotes (10.1 x 10(-6); P = 0.01). No significant effects were observed for other XRCC1 polymorphisms. These results suggest that the Arg399Gln amino acid change may alter the phenotype of the XRCC1 protein, resulting in deficient DNA repair.  (+info)

In vivo mutagenicity and hepatocarcinogenicity of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) in bitransgenic c-myc/lambda lacZ mice. (52/2171)

2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a mutagenic and carcinogenic heterocyclic amine found in cooked meat. Hepatic DNA adduct formation, in vivo mutagenicity, and hepatocarcinogenicity of MeIQx were examined in mice harboring the lacZ mutation reporter gene (Muta mice) and bitransgenic mice overexpressing the c-myc oncogene. C57Bl/lambda lacZ and bitransgenic c-myc (albumin promoter)/lambda lacZ mice were bred and weaned onto an American Institute of Nutrition-76-based diet containing 0.06% (w/w) MeIQx or onto control diet. After 30 weeks on diet, only male bitransgenic mice on MeIQx developed hepatocellular carcinoma (100% incidence). By 40 weeks, hepatic tumor incidence was 100%/75% (17%/0%) and 44%/17% (0%/0%) in male c-myc/lambda lacZ and C57Bl/lambda lacZ mice who were given MeIQx (or control) diet, respectively, supporting a synergism between MeIQx and c-myc overexpression in hepatocarcinogenesis. At either time point, mutant frequency in the lacZ gene was at least 40-fold higher in MeIQx-treated mice than in control mice of either strain. These findings suggest that MeIQx-induced hepatocarcinogenesis is associated with MeIQx-induced mutations. Elevated mutant frequency in MeIQx-treated mice also occurred concomitant with the formation of MeIQx-guanine adducts, as detected by the 32P-postlabeling assay. Irrespective of strain or diet, sequence analysis of the lacZ mutants from male mouse liver showed that the principal sequence alterations were base substitutions at guanine bases. Adenine mutations, however, were detected only in animals on control diet. MeIQx-fed mice harboring the c-myc oncogene showed a 1.4-2.6-fold higher mutant frequency in the lacZ gene than mice not carrying the transgene. Although there was a trend toward higher adduct levels in c-myc mice, MeIQx-DNA adduct levels were not significantly different between c-myc/lambda lacZ and C57Bl/lambda lacZ mice after 30 weeks on diet. Thus, it seemed that factors in addition to MeIQx-DNA adduct levels, such as the enhanced rate of proliferation associated with c-myc overexpression, may have accounted for a higher mutant frequency in c-myc mice. In the control diet groups, the lacZ mutant frequency was significantly higher in c-myc/lambda lacZ mice than in C57Bl/lambda lacZ mice. The findings are consistent with the notion that c-myc overexpression is associated with an increase in mutagenesis. The mechanism for the synergistic effects of c-myc overexpression on MeIQx hepatocarcinogenicity seems to involve an enhanced expression of MeIQx-induced mutations.  (+info)

Pharmacokinetic schedule finding study of the combination of gemcitabine and cisplatin in patients with solid tumors. (53/2171)

PURPOSE: To determine possible schedule dependent pharmacokinetic and pharmacodynamic interactions between gemcitabine (2',2'-difluorodeoxycytidine, dFdC) and cisplatin (cis-diammine-dichloroplatinum, CDDP) in patients with advanced stage solid tumors in a phase I trial. PATIENTS AND METHODS: A total of 33 patients with advanced stage solid tumors were treated with gemcitabine (30-min infusion, 800 mg/m2) and cisplatin (one-hour infusion, 50 mg/m2). Sixteen patients had a four-hour interval between gemcitabine (days 1, 8, 15) and cisplatin (days 1 and 8), followed by the reverse schedule and seventeen patients had a 24-hour interval between gemcitabine (days 1, 8, 15) and cisplatin (days 2 and 9), followed by the reverse schedule. Gemcitabine and cisplatin pharmacokinetics were measured in plasma and white blood cells (WBC), isolated from blood samples taken at several time points after the start of treatment. RESULTS: A four-hour time interval between both agents did not reveal major differences in plasma pharmacokinetics of gemcitabine, dFdU (deaminated gemcitabine) and platinum (Pt), and of gemcitabine-triphosphate (dFdCTP) accumulation and Pt-DNA adduct formation in WBC between the two different sequences of gemcitabine and cisplatin. In the patients treated with the 24-hour interval, cisplatin before gemcitabine did not significantly change peak gemcitabine levels and the AUC of plasma dFdU, but tended to increase dFdCTP AUC in WBC 1.5-fold (P < 0.06). Gemcitabine before cisplatin decreased the plasma AUC of Pt 2.1-fold (P = 0.03). No significant differences in Pt-DNA adduct levels in WBC were found, although gemcitabine before cisplatin tended to increase the 24-hour retention of Pt-DNA adducts. Creatinine clearance on day 28 was related to the peak plasma levels of total Pt (linear regression coefficient (r) = 0.47, P = 0.02, n = 26). Furthermore, the increase in the Pt-GG to Pt-AG ratio 24 hours after cisplatin treatment was related to the overall response of patients (r = 0.89, P < 0.01, n = 8). CONCLUSIONS: Of all schedules the treatment of patients with cisplatin 24 hours before gemcitabine led to the highest dFdCTP accumulation in WBC and total Pt levels in plasma. These characteristics formed the basis for further investigation of this schedule in a phase II clinical study.  (+info)

Standardization and validation of DNA adduct postlabelling methods: report of interlaboratory trials and production of recommended protocols. (54/2171)

The aim of this project was to devise and test improved protocols of the 32P-postlabelling assay for the detection of carcinogen-DNA adducts. The intention was to reverse the drift of different investigators using increasingly divergent experimental conditions. This would lead to a more standardized assay that can be used in future applications by different investigators for the monitoring of human exposure to genotoxic agents, permitting more meaningful comparisons between different studies or between different participants in the same study. As part of this process, there was perceived to be a need for carcinogen-modified DNA standards of known levels of adducts for use as positive controls, as standards for normalization of results with unknown samples and to assist interlaboratory comparisons. The preparation of characterized DNA standards modified by benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), 4-aminobiphenyl (ABP), an aromatic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic amine, and N-methyl-N-nitrosourea (MNU), a methylating agent yielding DNA containing O6-methylguanine, was carried out. A critical appraisal of all aspects of the 32P-postlabelling procedure and investigations to examine the influence of a number of key variations on the assay were conducted. There followed testing of a consensus protocol in a first interlaboratory trial involving 25 participants in Europe and the USA, conducted on the prepared synthetic DNA standards, the assessment of interlaboratory variability and the reasons for it. Revision of the protocols was followed by further testing in a second interlaboratory trial in which liver DNA from mice treated with BaP or ABP were assayed together with the synthetic DNA standards. Adduct levels were found to be significantly lower by 32P-postlabelling than by 3H incorporation. A recommended set of procedures has been developed for the detection and quantitation of DNA adducts formed by PAHs, aromatic amines and methylating agents. These trials have led to a much clearer idea as to what are the critical features and procedures of the 32P-postlabelling assay and there is a set of standard DNA samples for use in quality control and against which biological samples can be normalized. Use of these standards and procedures has reduced interlaboratory variability in quantitation of DNA adducts.  (+info)

Prostate-specific human N-acetyltransferase 2 (NAT2) expression in the mouse. (55/2171)

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine identified in the human diet and in cigarette smoke that produces prostate tumors in the rat. PhIP is bioactivated by cytochrome P-450 enzymes to N-hydroxylated metabolites that undergo further activation by conjugation enzymes, including the N-acetyltransferases, NAT1 and NAT2. To investigate the role of prostate-specific expression of human N-acetyltransferase 2 (NAT2) on PhIP-induced prostate cancer, we constructed a transgenic mouse model that targeted expression of human NAT2 to the prostate. Following construction, prostate, liver, lung, colon, small intestine, urinary bladder, and kidney cytosols were tested for human NAT1- and NAT2-specific N-acetyltransferase activities. Human NAT2-specific N-acetyltransferase activities were 15-fold higher in prostate of transgenic mice versus control mice, but were equivalent between transgenic mice and control mice in all other tissues tested. Human NAT1-specific N-acetyltransferase activities did not differ between transgenic and control mice in any tissue tested. Prostate cytosols from transgenic and control mice did not differ in their capacity to catalyze the N-acetylation of 2-aminofluorene, the O-acetylation of N-hydroxy-2-aminofluorene and N-hydroxy-PhIP or the N,O-acetylation of N-hydroxy-2-acetylaminofluorene. Transgenic and control mice administered PhIP did not differ in PhIP-DNA adduct levels in the prostate. This study is the first to report transgenic expression of human NAT2 in the mouse. The results do not support a critical role for bioactivation of heterocyclic amine carcinogens by human N-acetyltransferase-2 in the prostate. However, the lack of an effect may relate to the level of overexpression achieved and the presence of endogenous mouse acetyltransferases and/or sulfotransferases.  (+info)

Nickel(II) increases the sensitivity of V79 Chinese hamster cells towards cisplatin and transplatin by interference with distinct steps of DNA repair. (56/2171)

Nickel compounds are carcinogenic to humans and to experimental animals. In contrast to their weak mutagenicity, they have been shown previously to increase UV-induced cytotoxicity and mutagenicity and to interfere with the repair of UV-induced DNA lesions by disrupting DNA-protein interactions involved in DNA damage recognition. In the present study we applied cisplatin, transplatin and mitomycin C to investigate whether these enhancing effects and DNA repair inhibition are also relevant for other DNA damaging agents. Nickel(II) at non-cytotoxic concentrations of 50 microM and higher caused a pronounced increase in cisplatin-, transplatin- and mitomycin C-induced cytotoxicity, which was neither due to an altered uptake of cisplatin or transplatin nor to an increase in DNA adduct formation. However, nickel(II) inhibited the repair of cisplatin- and transplatin-induced DNA lesions. In combination with transplatin, it decreased the incision frequency, indicating that the DNA damage recognition/incision step during nucleotide excision repair is affected in general by nickel(II). In support of this, concentrations as low as 10 microM nickel(II) decreased binding of the xeroderma pigmentosum complementation group A protein to a cisplatin-damaged oligonucleotide. When combined with cisplatin, the incision frequency was affected only marginally, while nickel(II) led to a marked accumulation of DNA strand breaks, indicating an inhibition of the polymerization/ligation step of the repair process. This effect may be explained by interference with the repair of DNA-DNA interstrand crosslinks induced by cisplatin. Our results suggest that nickel(II) at non-cytotoxic concentrations inhibits nucleotide excision repair and possibly crosslink repair by interference with distinct steps of the respective repair pathways.  (+info)