Role of glutamate receptors and voltage-dependent calcium channels in glutamate toxicity in energy-compromised cortical neurons. (41/1204)

We have examined the effect of glutamate receptor antagonists and voltage-dependent calcium channel blockers on the neuronal injury induced by the combination of a low concentration of N-methyl-D-aspartate (NMDA) or kainate and energy compromise resulting from the use of glucose-free incubation buffer. Toxicity induced by NMDA or kainate was enhanced in the glucose-free buffer. NMDA-or non-NMDA-receptor antagonists added to the glucose-free buffer at the same time inhibited the neuronal cell death induced by each agonist. An NMDA-receptor antagonist, MK-801, but not non-NMDA-receptor antagonists, inhibited the toxicity when added to the culture medium after exposure of the cells to the agonists. P/Q-type calcium channel blockers, omega-agatoxin IVA and omega-agatoxin TK, and an N-type calcium channel blocker, omega-conotoxin GVIA, significantly attenuated the neuronal injury, although an L-type calcium channel blocker, nifedipine, showed little neuroprotective effect. A combination of calcium channel blockers of the three subtypes showed the most prominent neuroprotective effect. These observations suggest that the overactivation of NMDA and non-NMDA receptors and consequent activation of the voltage-dependent calcium channels lead to neuronal cell death in energy-compromised cortical neurons.  (+info)

The effects of MK-801 and U-83836E on post-ischemic reperfusion injury in rat brain. (42/1204)

Rats were subjected to incomplete cerebral ischemia induced by occlusion of common carotid arteries for 30 min, and subsequent reperfusion for 15 min. The concentrations of reduced glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) activity were determined in the dorsal hippocampus in order to evaluate their changes during ischemia and reperfusion following ischemia. The depletion of GSH was observed during ischemia with a further depletion during post-ischemic reperfusion (P < 0.001), while a significant increase in SOD activity and MDA levels was found only after reperfusion following ischemia (P < 0.001). Animals in which ischemia was followed by reperfusion were treated with a non-competitive NMDA receptor antagonist, MK-801 (1 mg/kg, i.v.), and a radical scavenger, U-83836E (5 mg/kg, i.v.), prior to ischemia. Although a full recovery of GSH levels was not observed following MK-801 and U-83836E pretreatment as compared to control (P < 0.05), MK-801 was more potent than U-83836E in the partial protection of the GSH pool (P < 0.05 and P < 0.01, respectively). The rise in SOD activity and MDA level were brought close to those of control due to the effects of both MK-801 and U-83836E (P > 0.05). In conclusion, the tissue changes in GSH concentrations evoked by ischemia and reperfusion were partially prevented by the effects of both drugs, MK-801 having the greater effect. This suggests that the NMDA receptor activation may play a role in the generation of reactive oxygen species. On the other hand, the inhibition of lipid peroxidation brought about by both MK-801 or U-83836E suggests the therapeutic efficiency of these agents in ischemia/reperfusion injury.  (+info)

Selective glutamate receptor antagonists can induce or prevent axonal sprouting in rat hippocampal slice cultures. (43/1204)

After the transection of the Schaffer collateral pathway in hippocampal slice cultures, reactive sprouting is induced in the CA3 area, and eventually synaptic transmission between areas CA1 and CA3 is restored. Using this model, we have studied the role of ionotropic glutamate receptors in the initiation of axonal sprouting and the regeneration of functional synapses. We show that neither reactive sprouting nor functional recovery of synaptic transmission occur in the presence of the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-nitro-7-sulfamoylbenzoquinoxaline-2,3-dione (CNQX). In contrast, the NMDA receptor antagonists methyl-10, 11-dihydro-5-H-dibenzocyclohepten-5,10-imine (MK-801) or 3-(RS)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP) did not interfere with these processes. Moreover, we observed that the application of NMDA receptor antagonists induced massive axonal sprouting and an increase in the frequency of miniature excitatory postsynaptic currents in unlesioned cultures. Our results thus indicate that NMDA and non-NMDA receptors exert a differential effect on reactive sprouting and the recovery of synaptic transmission after injury in the hippocampus. Activation of non-NMDA receptors appears necessary for these processes to occur, whereas activation of NMDA receptors suppresses growth-associated protein -43 expression and axonal outgrowth.  (+info)

Precisely localized LTD in the neocortex revealed by infrared-guided laser stimulation. (44/1204)

In a direct approach to elucidate the origin of long-term depression (LTD), glutamate was applied onto dendrites of neurons in rat neocortical slices. An infrared-guided laser stimulation was used to release glutamate from caged glutamate in the focal spot of an ultraviolet laser. A burst of light flashes caused an LTD-like depression of glutamate receptor responses, which was highly confined to the region of "tetanic" stimulation (<10 micrometers). A similar depression of glutamate receptor responses was observed during LTD of synaptic transmission. A spatially highly specific postsynaptic mechanism can account for the LTD induced by glutamate release.  (+info)

Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor-dependent neuronal cell death and caspase-3-dependent apoptosis. (45/1204)

Neuronal necrosis and apoptosis occur after traumatic brain injury (TBI) in animals and contribute to subsequent neurological deficits. In contrast, relatively little apoptosis is found after mechanical injury in vitro. Because in vivo trauma models and clinical head injury have associated cerebral ischemia and/or metabolic impairment, we transiently impaired cellular metabolism after mechanical trauma of neuronal-glial cultures by combining 3-nitropropionic acid treatment with concurrent glucose deprivation. This produced greater neuronal cell death than mechanical trauma alone. Such injury was attenuated by the NMDA receptor antagonist dizocilpine (MK801). In addition, this injury significantly increased the number of apoptotic cells over that accruing from mechanical injury alone. This apoptotic cell death was accompanied by DNA fragmentation, attenuated by cycloheximide, and associated with an increase in caspase-3-like but not caspase-1-like activity. Cell death was reduced by the pan-caspase inhibitor BAF or the caspase-3 selective inhibitor z-DEVD-fmk, whereas the caspase-1 selective inhibitor z-YVAD-fmk had no effect; z-DEVD-fmk also reduced the number of apoptotic cells after combined injury. Moreover, cotreatment with MK801 and BAF resulted in greater neuroprotection than either drug alone. Thus, in vitro trauma with concurrent metabolic inhibition parallels in vivo TBI, showing both NMDA-sensitive necrosis and caspase-3-dependent apoptosis.  (+info)

Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals. (46/1204)

To test the possible role of N-methyl-D-aspartate (NMDA) glutamate receptors in the transmission of gastrointestinal satiety signals at the level of the nucleus of the solitary tract (NTS), we assessed the effect of fourth ventricular infusion of the noncompetitive NMDA receptor antagonist MK-801 on short-term sucrose intake and on gastric distension-induced Fos expression in the dorsal vagal complex of unanesthetized rats. MK-801, although not affecting initial rate of intake, significantly increased sucrose intake during the later phase of the meal (10-30 min, 8.9 +/- 1.0 vs. 2.9 +/- 0.8 ml, P < 0.01). In the medial subnucleus of the NTS, the area postrema, and the dorsal motor nucleus, MK-801 did not reduce gastric distension-induced Fos expression and itself did not significantly induce Fos expression. In the dorsomedial, commissural, and gelatinosus subnuclei, MK-801 in itself produced significant Fos expression and significantly reduced (-75%, P < 0.05) the ability of gastric distension to induce Fos expression, assuming an additive model with two separate populations of neurons activated by distension and the blocker. Although these results are consistent with NMDA receptor-mediated glutamatergic transmission of vagal satiety signals in general, they lend limited support for such a role in the transmission of specific gastric distension signals.  (+info)

Role of adenosine and N-methyl-D-aspartate receptors in mediating haloperidol-induced gene expression and catalepsy. (47/1204)

Acute blockade of dopamine D(2) receptors by the typical antipsychotic drug haloperidol leads to alterations in neuronal gene expression and behavior. In the dorsolateral striatum, the levels of mRNA for the immediate-early gene c-fos and the neuropeptide gene neurotensin/neuromedin N (NT/N) are significantly increased by haloperidol. An acute behavioral response to haloperidol is catalepsy, considered to be a rodent correlate of some of the immediate extrapyramidal motor side effects seen in humans. Several lines of evidence suggest a link between neurotensin induction in the dorsolateral striatum and catalepsy. We hypothesize that both striatal gene induction and catalepsy elicited by haloperidol arise from the combined effect of excitatory adenosinergic and glutamatergic inputs acting at adenosine A(2A) and N-methyl-D-aspartate (NMDA) receptors, respectively. In agreement with our previous reports, adenosine antagonists reduced haloperidol-induced c-fos and neurotensin gene expression as well as catalepsy. In agreement with other reports, the noncompetitive NMDA receptor antagonist MK-801 also reduced gene expression and catalepsy in response to haloperidol. The competitive NMDA receptor antagonist LY235959 decreased haloperidol-induced catalepsy. We show here that blocking both A(2A) and NMDA receptors simultaneously in conjunction with haloperidol resulted in a combined effect on gene expression and behavior that was greater than that for block of either receptor alone. Both c-fos and NT/N mRNA levels were reduced, and catalepsy was completely abolished. These results indicate that the haloperidol-induced increases in c-fos and NT gene expression in the dorsolateral striatum and catalepsy are driven largely by adenosine and glutamatergic inputs acting at A(2A) and NMDA receptors.  (+info)

High-affinity interaction of (des-Tyrosyl)dynorphin A(2-17) with NMDA receptors. (48/1204)

The opioid peptide dynorphin A elicits non-opioid receptor-mediated, neurotoxic response in vivo, which is blocked by pretreatment with MK-801, a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist. In the present study, we examined the possible direct interaction of dynorphin A on the NMDAR. A nonopioid dynorphin A analog, (125)I-(des-tyrosyl) dynorphin A(2-17), was used in radioligand binding analysis on rat cortical brain membranes. This radioligand exhibited a saturable, specific binding at high affinity with a K(d) value of 9.4+/-1.6 nM and maximal binding of 2.4+/-0.6 pmol/mg protein. This binding site was associated with the NMDAR complex because it was modulated by a number of NMDAR ligands. Transient expression of the rat NR1a/NR2A complex in human embryonic kidney 293 cells confirmed a coexpression of (125)I-(des-tyrosyl) dynorphin A(2-17), [(3)H]CGP39,653, and [(3)H]MK-801 binding. These data provide direct evidence of the presence of a high-affinity binding site for dynorphin A on the NMDAR. The modulatory effect of the various NMDAR-selective ligands on dynorphin A binding suggests that dynorphin A may bind preferentially to the closed/desensitized state of the NMDAR. The physiological role of dynorphin A binding to the NMDAR remains to be established.  (+info)