Low calorie diet enhances renal, hemodynamic, and humoral effects of exogenous atrial natriuretic peptide in obese hypertensives. (1/1091)

The expression of the natriuretic peptide clearance receptor is abundant in human and rat adipose tissue, where it is specifically inhibited by fasting. In obese hypertensives, plasma atrial natriuretic peptide (ANP) levels were found to be lower than in obese normotensives. Therefore, the increased adipose mass might influence ANP levels and/or its biological activity. The aim of the present study was to evaluate whether the humoral, hemodynamic, and renal effects of exogenous ANP in obese hypertensives might be enhanced by a very low calorie diet. Eight obese hypertensives received a bolus injection of ANP (0.6 mg/kg) after 2 weeks of a normal calorie/normal sodium diet, and blood pressure (BP), heart rate, ANP, cGMP, plasma renin activity, and aldosterone were evaluated for 2 hours before and after the injection. Diuresis and natriuresis were measured every 30 minutes. The patients then started a low calorie/normal sodium diet (510 kcal/150 mmol/d) for 4 days, and then the ANP injection protocol was repeated. The low calorie diet induced a slight weight loss (from 90.6+/-1.1 to 87. 7+/-1.2 kg; P<0.01), which was accompanied by increase of cGMP excretion (from 146.0+/-10.1 to 154.5+/-9.5 nmol/24 h; P<0.05) together with a reduction of BP (P<0.01 versus basal levels). ANP injection after diet was followed by an increase of ANP levels similar to that observed before diet, but plasma cGMP, diuresis, and natriuresis increased significantly only after diet. Similarly, the decrease of BP after ANP administration was significantly higher after diet (change in mean arterial pressure, -6.4+/-0.7 versus -4. 0+/-0.6 mm Hg; P<0.05) as well as that of aldosterone (P<0.01). These data show that a low calorie diet enhances the humoral, renal, and hemodynamic effects of ANP in obese hypertensives and confirm the importance of caloric intake in modulating the biological activity of ANP, suggesting that the natriuretic peptide system can play a role in the acute changes of natriuresis and diuresis associated with caloric restriction.  (+info)

Immediate and early renal function after living donor transplantation. (2/1091)

BACKGROUND: In order to assess the immediate renal function after living donor transplantation, renal function was compared in eight renal allograft recipients and their living related kidney donors during the first 24 h after transplantation. METHODS: Substantial and comparable intraoperative volume loading with Ringer's acetate and mannitol was performed together with the administration of frusemide. Glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) were estimated by the clearances of inulin and p-aminohippurane, respectively. Tubular reabsorptive function and injury were estimated from the clearance of lithium, the fractional excretion of sodium and the urinary excretion of N-acetyl-beta-glucosaminidase. RESULTS: One hour after completion of surgery, GFR (54 +/- 7 ml/min) and ERPF (294 +/- 35 ml/min) were only 30% lower in the grafts than in the remaining donor kidneys, increasing to similar levels within 3 h. Only minor tubular dysfunction and injury were revealed in the grafted kidneys, and these tended to normalize within 24 h. CONCLUSIONS: By the present transplantation procedure comprising short ischaemia time and substantial volume expansion combined with mannitol and frusemide administration, kidneys from living donors regain nearly normal function within a few hours after transplantation.  (+info)

Cardiovascular, endocrine, and renal effects of urodilatin in normal humans. (3/1091)

Effects of urodilatin (5, 10, 20, and 40 ng. kg-1. min-1) infused over 2 h on separate study days were studied in eight normal subjects with use of a randomized, double-blind protocol. All doses decreased renal plasma flow (hippurate clearance, 13-37%) and increased fractional Li+ clearance (7-22%) and urinary Na+ excretion (by 30, 76, 136, and 99% at 5, 10, 20, and 40 ng. kg-1. min-1, respectively). Glomerular filtration rate did not increase significantly with any dose. The two lowest doses decreased cardiac output (7 and 16%) and stroke volume (10 and 20%) without changing mean arterial blood pressure and heart rate. The two highest doses elicited larger decreases in stroke volume (17 and 21%) but also decreased blood pressure (6 and 14%) and increased heart rate (15 and 38%), such that cardiac output remained unchanged. Hematocrit and plasma protein concentration increased with the three highest doses. The renin-angiotensin-aldosterone system was inhibited by the three lowest doses but activated by the hypotensive dose of 40 ng. kg-1. min-1. Plasma vasopressin increased by factors of up to 5 during infusion of the three highest doses. Atrial natriuretic peptide immunoreactivity (including urodilatin) and plasma cGMP increased dose dependently. The urinary excretion rate of albumin was elevated up to 15-fold (37 +/- 17 micrograms/min). Use of a newly developed assay revealed that baseline urinary urodilatin excretion rate was low (<10 pg/min) and that fractional excretion of urodilatin remained below 0.1%. The results indicate that even moderately natriuretic doses of urodilatin exert protracted effects on systemic hemodynamic, endocrine, and renal functions, including decreases in cardiac output and renal blood flow, without changes in arterial pressure or glomerular filtration rate, and that filtered urodilatin is almost completely removed by the renal tubules.  (+info)

Hemodynamic and renal effects of U-46619, a TXA2/PGH2 analog, in late-pregnant rats. (4/1091)

The vasoconstrictor effects of pressor agents are attenuated during pregnancy. Thromboxane A2 (TXA2) is produced in great quantities during hypertension in pregnancy, and therefore it is important to know whether pregnancy modifies the pressor effects of TXA2. The TXA2 analog U-46619 was infused in anesthetized, acutely prepared and conscious, chronically prepared late-pregnant and nonpregnant female rats to examine its systemic hemodynamic and renal effects. Mean arterial pressure (MAP) and total peripheral resistance (TPR) were lower in anesthetized pregnant than nonpregnant rats (P < 0.01). The infusion of U-46619 into the aortic arch resulted in elevation of MAP only in pregnant rats, due to a greater elevation of TPR (60 +/- 17%) compared with nonpregnant rats (36 +/- 6%, P < 0.05). The pressor effect of intravenously infused U-46619 was also enhanced in conscious pregnant versus nonpregnant rats, and the increase in renal vascular resistance was undiminished. U-46619 increased hematocrit and plasma protein concentration more during pregnancy, which suggested greater reduction of plasma volume. The urinary excretion of sodium (-1.49 +/- 0.25 vs. -0.54 +/- 0.24 micromol/min) and water was reduced more in pregnant than nonpregnant rats during U-46619 (P < 0.01). Thus the MAP and renal effects of the TXA2 analog are exaggerated during pregnancy in the rat.  (+info)

The subtype 2 of angiotensin II receptors and pressure-natriuresis in adult rat kidneys. (5/1091)

The present work examined the effects of the subtype 2 of angiotensin II (AT2) receptors on the pressure-natriuresis using a new peptide agonist, and the possible involvement of cyclic guanosine 3', 5' monophosphate (cyclic GMP) in these effects. In adult anaesthetized rats (Inactin, 100 mg kg(-1), i.p.) deprived of endogenous angiotensin II by angiotensin converting enzyme inhibition (quinapril, 10 mg kg(-1), i.v.), T2-(Ang II 4-8)2 (TA), a highly specific AT2 receptor agonist (5, 10 and 30 microg kg(-1) min(-1), i.v.) or its solvent was infused in four groups. Renal functions were studied at renal perfusion pressures (RPP) of 90, 110 and 130 mmHg and urinary cyclic GMP excretion when RPP was at 130 mmHg. The effects of TA (10 microg kg(-1) min(-1)) were reassessed in animals pretreated with PD 123319 (PD, 50 microg kg(-1) min(-1), i.v.), an AT2 receptor antagonist and the action of the same dose of PD alone was also determined. Increases in RPP from 90 to 130 mmHg did not change renal blood flow (RBF) but induced 8 and 15 fold increases in urinary flow and sodium excretion respectively. The 5 microg kg(-1) min(-1) dose of TA was devoid of action. The 10 and 30 microg kg(-1) min(-1) doses did not alter total RBF and glomerular filtration rate, but blunted pressure-diuresis and natriuresis relationships. These effects were abolished by PD. TA decreased urinary cyclic GMP excretion. After pretreatment with PD, this decrease was reversed to an increase which was also observed in animals receiving PD alone. In conclusion, renal AT2 receptors oppose the sodium and water excretion induced by acute increases in blood pressure and this action cannot be directly explained by changes in cyclic GMP.  (+info)

Endothelin mediates renal vascular memory of a transient rise in perfusion pressure due to NOS inhibition. (6/1091)

We investigated the renal responses to NO synthase (NOS) inhibition with N-monomethyl-L-arginine (L-NMA; 30 mg/kg) in anesthetized rats in which renal perfusion pressure (RPP) to the left kidney was mechanically adjusted. Acute L-NMA increased blood pressure (BP, approximately 20%) and renal vascular resistance (RVR) rose ( approximately 50%) in the right kidneys that were always exposed to high RPP. In group 1, the left kidney was exposed to a transient increase (5 min) in RPP which was then normalized, and the rise in RVR was similar to the right kidney. In group 2 the left kidney was never exposed to high RPP, and the rise in RVR was attenuated relative to the right kidney. In group 3, rats were pretreated with the endothelin (ET) receptor antagonist Bosentan, immediately before exposure of the left kidney to a transient increase in RPP, and the rise in RVR was also attenuated relative to the right kidney. NOS inhibition resulted in a natriuresis and diuresis in the right kidneys, and approximately 50% of the natriuresis persisted in the left kidney of group 2, in the absence of any rise in RPP. ET antagonism completely prevented the natriuresis and diuresis in response to acute L-NMA in both left and right kidneys. These data suggest that transient exposure to high RPP by NOS inhibition prevents an appropriate vasodilatory response when RPP is lowered, due to the intrarenal action of ET.  (+info)

Central injections of capsaicin cause antidiuresis mediated through neurokinin-1 receptors in rat hypothalamus and vasopressin release. (7/1091)

Intracerebroventricular injections of capsaicin at 100-500 nmol elicited dose-dependent decreases in urine outflow volume in anesthetized, hydrated rats. The capsaicin (500 nmol)-induced antidiuresis was inhibited by pretreatment with CP96345 (30 nmol, a neurokinin-1-receptor antagonist), but not by that with phenoxybenzamine (20 nmol, an alpha-adrenoceptor antagonist), timolol (100 nmol, a beta-adrenoceptor antagonist) or atropine (300 nmol, a muscarinic antagonist) into the hypothalamic supraoptic nucleus (SON). Intravenous injections of d(CH2)5-D-Tyr(Et)VAVP (50 microg/kg, a vasopressin-receptor antagonist) completely blocked the antidiuresis. In intra-SON microdialysis experiments, acetylcholine concentration in the perfusate of the capsaicin-injected rats was not different from that of the vehicle-injected rats. These findings suggested that capsaicin stimulated substance P release in the SON and caused the antidiuresis as a result of the increased release of vasopressin into the circulation from the neurohypophysis mediated through neurokinin-1 receptors in the SON.  (+info)

Brain mineralocorticoid receptor control of blood pressure and kidney function in normotensive rats. (8/1091)

Brain mineralocorticoid receptors appear to contribute to mineralocorticoid hypertension and may be involved in blood pressure control in normotensive rats. We examined the effect of blockade of central mineralocorticoid receptors with the use of a selective antagonist (RU28318) on cardiovascular and renal function in conscious normotensive rats. The contribution of renal innervation was evaluated in rats with bilaterally denervated kidneys. Young adult, male Wistar rats were trained for systolic blood pressure measurement by a tail sphygmographic method and accustomed to metabolic cages for collection of urine. One week before experimentation, an intracerebroventricular cannula was implanted. Systolic blood pressure was diminished 30 minutes after an intracerebroventricular dose of 10 ng of RU28318. The effect was maximal at 8 hours and was still present after 24 hours. Blood pressure returned to the basal level by 48 hours. During the period 0 to 8 hours after intracerebroventricular injection, rats treated with the antagonist showed an increase in diuresis and urinary electrolyte excretion. No significant effect on plasma renin activity, measured 8 and 30 hours after administration of RU28318, was observed. In denervated rats, the decrease in systolic blood pressure after administration of RU28318 was reduced. The difference was statistically significant compared with controls at 2 hours but not at 8 hours, and blood pressure returned to the basal value by 24 hours. The increases in diuresis and urinary electrolyte excretion induced by RU28318 were abolished in denervated rats. These results show that brain mineralocorticoid receptors are involved in blood pressure regulation and kidney function homeostasis in conscious normotensive rats. The renal nerves appear to participate in the brain mineralocorticoid receptor control of blood pressure.  (+info)