Fitzgerald factor (high molecular weight kininogen) clotting activity in human plasma in health and disease in various animal plasmas. (1/581)

Fitzgerald factor (high molecular weight kininogen) is an agent in normal human plasma that corrects the impaired in vitro surface-mediated plasma reactions of blood coagulation, fibrinolysis, and kinin generation observed in Fitzgerald trait plasma. To assess the possible pathophysiologic role of Fitzgerald factor, its titer was measured by a functional clot-promoting assay. Mean +/- SD in 42 normal adults was 0.99+/-0.25 units/ml, one unit being the activity in 1 ml of normal pooled plasma. No difference in titer was noted between normal men and women, during pregnancy, or after physical exercise. Fitzgerald factor activity was significantly reduced in the plasmas of eight patients with advanced hepatic cirrhosis (0.40+/-0.09 units/ml) and of ten patients with disseminated intravascular coagulation (0.60+/-0.30 units/ml), but was normal in plasmas of patients with other congenital clotting factor deficiencies, nephrotic syndrome, rheumatoid arthritis, systemic lupus erythematosus, or sarcoidosis, or under treatment with warfarin. The plasmas of 21 mammalian species tested appeared to contain Fitzgerald factor activity, but those of two avian, two repitilian, and one amphibian species did not correct the coagulant defect in Fitzgerald trait plasmas.  (+info)

Transcatheter arterial embolization for impending rupture of an isolated internal iliac artery aneurysm complicated with disseminated intravascular coagulation. (2/581)

A 90-year-old male, with impending rupture of an isolated internal iliac artery aneurysm (IIAA) complicated with disseminated intravascular coagulation (DIC) was successfully treated with transcatheter arterial embolization (TAE). After TAE, enlargement of the aneurysm was arrested and coagulation-fibrinolytic abnormalities induced by DIC improved without severe complications. Although IIAA is relatively rare, the post-operative mortality of patients with ruptures is reportedly high. We assessed the usefulness of this procedure for impending rupture of IIAA, especially for patients in high risk groups.  (+info)

Hemolysis associated with 25% human albumin diluted with sterile water--United States, 1994-1998. (3/581)

Since 1994, a shortage of 5% human albumin, a product used off-label during therapeutic plasma exchange (TPE), has existed in the United States. Because of this shortage, hospital pharmacists may prepare 5% solution of human albumin by diluting 25% human albumin with 0.9% NaCl or, when sodium load is a concern, 5% dextrose. However, if sterile water alone is used as the diluent, the osmolarity (tonicity) of the albumin solution is reduced and may cause hemolysis in recipients. This report describes two of 10 episodes of hemolysis (one fatal) among persons who received 25% human albumin diluted with sterile water and emphasizes that sterile water alone should not be used to dilute albumin.  (+info)

Inflammation, sepsis, and coagulation. (4/581)

The molecular links between inflammation and coagulation are unquestioned. Inflammation promotes coagulation by leading to intravascular tissue factor expression, eliciting the expression of leukocyte adhesion molecules on the intravascular cell surfaces, and down regulating the fibrinolytic and protein C anticoagulant pathways. Thrombin, in turn, can promote inflammatory responses. This creates a cycle that logically progresses to vascular injury as occurs in septic shock. Most complex systems are regulated by product inhibition. This inflammation-coagulation cycle seems to follow this same principle with the protein C pathway serving as the regulatory mechanism. The molecular basis by which the protein C pathway functions as an anticoagulant is relatively well established compared to the mechanisms involved in regulating inflammation. As one approach to identifying the mechanisms involved in regulating inflammation, we set out to identify novel receptors that could modulate the specificity of APC in a manner analogous to the mechanisms by which thrombomodulin modulates thrombin specificity. This approach led to the identification of an endothelial cell protein C receptor (EPCR). To understand the mechanism, we obtained a crystal structure of APC (lacking the Gla domain). The crystal structure reveals a deep groove in a location analogous to anion binding exosite 1 of thrombin, the location of interaction for thrombomodulin, platelet thrombin receptor and fibrinogen. Thrombomodulin blocks the activation of platelets and fibrinogen without blocking reactivity with chromogenic substrates or inhibitors. Similarly, in solution, EPCR blocks factor Va inactivation without modulating reactivity with protease inhibitors. Thus, these endothelial cell receptors for the protein C system share many properties in common including the ability to be modulated by inflammatory cytokines. Current studies seek to identify the substrate for the APC-EPCR complex as the next step in elucidating the mechanisms by which the protein C pathway modulates the response to injury and inflammation.  (+info)

Incidence and possible reasons for discordant results between positive FDP and negative D-dimer latex assays in clinical specimens. (5/581)

In general, FDP and D-dimer values have a correlation in clinical conditions associated with disseminated intravascular coagulation(DIC) or coagulation activation. However, there are some patients with discordant results who demonstrate elevated FDP and negative D-dimer results by latex agglutination assays. The incidence and possible reasons for the discordance between FDP and D-dimer results were investigated through simultaneous measurements (n = 763) from clinical patients with suspected DIC or coagulation activation. 24.8% (189/763) of samples with elevated FDP were negative for D-dimer assays by the latex agglutination method. Further detailed analysis on randomly-selected discordant samples (n = 41) revealed that the most common reason for the discordance was the lower sensitivity of the semiquantitative latex agglutination method for D-dimer, compared with quantitative enzyme or other latex immunoassay. The other contributing factors to the discordance were accelerated fibrinogenolysis without secondary fibrinolysis, elevated soluble fibrin monomer and rheumatoid factor.  (+info)

Hypercalcemia and parathyroid hormone-related protein in a dog with undifferentiated nasal carcinoma. (6/581)

Hypercalcemia was discovered in a 7-year-old, castrated male basset hound with a suspected nasal tumor. The dog died the day after admission and nasal carcinoma and disseminated intravascular coagulation were diagnosed on postmortem. Detectable levels of serum PTHrP support a diagnosis of hypercalcemia of malignancy.  (+info)

Review: infectious diseases and coagulation disorders. (7/581)

Infection, both bacterial and nonbacterial, may be associated with coagulation disorders, resulting in disseminated intravascular coagulation and multiorgan failure. In the last few decades a series of in vivo and in vitro studies has provided more insight into the pathogenetic mechanisms and the role of cytokines in these processes. Because of the growing interest in this field, the complexity of the subject, and the fact that many physicians must deal with a variety of infections, current data are reviewed on the association between infectious diseases and the coagulation system. Novel therapeutic intervention strategies that will probably become available in the near future are mentioned, along with those of special interest for infectious disorders for which only supportive care can be given.  (+info)

Disseminated thrombosis and bone infarction in female rats following inhalation exposure to 2-butoxyethanol. (8/581)

Groups of 10 male and 10 female F344/N rats were exposed to 0, 31, 62.5, 125, 250, and 500 ppm of 2-butoxyethanol (BE) by inhalation, 6 hr/day, 5 days/wk, for 13 wk. Four moribund female rats from the 500 ppm group were sacrificed during the first 4 days of exposure, and 1 moribund female from the same group was sacrificed during week 5. Dark irregular mottling and/or loss of the distal tail were noted in sacrificed moribund rats. Similar gross lesions were noted in the terminally sacrificed females exposed to 500 ppm BE. Histologic changes noted in the day 4 sacrificed moribund rats included disseminated thrombosis involving the coccygeal vertebrae, cardiac atrium, lungs, liver, pulp of the incisor teeth, and the submucosa of the anterior section of the nasal cavity. Alterations noted in coccygeal vertebrae from the 500 ppm sacrificed moribund rats included ischemic necrosis and/or degeneration of bone marrow cells, bone-lining cells, osteocytes (within cortical and trabecular bone), and chondrocytes (both articular and growth plate), changes that are consistent with an infarction process. The moribund female rat that was sacrificed during week 5 and those female rats treated with 500 ppm and sacrificed following 13 wk of treatment lacked thrombi, but they had coccygeal vertebral changes consistent with prior infarction and transient or complete bone growth arrest. No bone lesions or thrombi were noted in the male rats treated with the same doses of BE. In conclusion, exposure to 500 ppm BE vapors caused acute disseminated thrombosis and bone infarction in female rats. Possible pathogenic mechanisms are discussed.  (+info)