EC3, a novel heterodimeric disintegrin from Echis carinatus venom, inhibits alpha4 and alpha5 integrins in an RGD-independent manner. (1/290)

EC3, a heterodimeric disintegrin (Mr = 14,762) isolated from Echis carinatus venom is a potent antagonist of alpha4 integrins. Two subunits called EC3A and EC3B were isolated from reduced and alkylated EC3 by reverse-phase high performance liquid chromatography. Each subunit contained 67 residues, including 10 cysteines, and displayed a high degree of homology to each other and to other disintegrins. EC3 inhibited adhesion of cells expressing alpha4beta1 and alpha4beta7 integrins to natural ligands vascular cell adhesion molecule 1 (VCAM-1) and mucosal addressin cell adhesion molecule 1 (MadCAM-1) with IC50 = 6-30 nM, adhesion of K562 cells (alpha5beta1) to fibronectin with IC50 = 150 nM, and adhesion of alphaIIbbeta3 Chinese hamster ovary cells to fibrinogen with IC50 = 500 nM; it did not inhibit adhesion of alphavbeta3 Chinese hamster ovary cells to vitronectin. Ethylpyridylethylated EC3B inhibited adhesion of Jurkat cells to immobilized VCAM-1 (IC50 = 6 microM), whereas EC3A was inactive in this system. The MLDG motif appeared to be essential for activity of EC3B. Linear MLDG peptide inhibited the adhesion of Jurkat to VCAM-1 in a dose-dependent manner (IC50 = 4 mM), whereas RGDS peptide was not active at the same concentration. MLDG partially inhibited adhesion of K562 cells to fibronectin (5-10 mM) in contrast to RGDS peptide (IC50 = 3 mM), inhibiting completely at 10 mM.  (+info)

Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. (2/290)

We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.  (+info)

Nucleotide sequence of a cDNA encoding a common precursor of disintegrin flavostatin and hemorrhagic factor HR2a from the venom of Trimeresurus flavoviridis. (3/290)

The venom of Trimeresurus flavoviridis has three disintegrins that act as platelet aggregation inhibitors by binding to integrin alphaIIb beta3 on platelets through its Arg-Gly-Asp sequence. We isolated the cDNA encoding the flavostatin precursor that is one of the disintegrins in T. flavoviridis venom. The open reading frame consisted of four regions, a pre-peptide region, a metalloprotease region, a spacer region and a disintegrin region, indicating that the flavostatin precursor belongs to the metalloprotease/disintegrin family. Surprisingly, the deduced amino acid sequence of the metalloprotease region was completely consistent with that of hemorrhagic metalloprotease HR2a, which indicated that this metalloprotease released from the flavostatin precursor functions as a hemorrhagic factor. These observations indicated that a disintegrin and a hemorrhagic metalloprotease were synthesized as a common precursor. Thus, our results support the hypothesis that a disintegrin is synthesized as a metalloprotease/disintegrin precursor and matures by cleavage from the precursor molecule.  (+info)

ADAMTS-1 is an active metalloproteinase associated with the extracellular matrix. (4/290)

Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes with a sequence similar to the snake venom metalloproteinases and disintegrins. ADAMTS-1 is a unique ADAM family protein with respect to the presence of thrombospondin type I motifs and the capacity to bind to the extracellular matrix. Because ADAMTS-1 has a potential zinc-binding motif in the metalloproteinase domain, we examined in this study whether ADAMTS-1 is an active metalloproteinase by means of the proteinase trapping mechanism of alpha2-macroglobulin. We found that the soluble type of ADAMTS-1 protein is able to form a covalent-binding complex with alpha2-macroglobulin. Furthermore, the point mutation within the zinc-binding motif of ADAMTS-1 protein eliminates its capacity to bind to alpha2-macroglobulin. These data demonstrate that the metalloproteinase domain of ADAMTS-1 is catalytically active. In addition, we showed that the removal of the pro-domain from the ADAMTS-1 precursor is impaired in the furin-deficient cell line, LoVo, and that the processing ability of the cells is restored by the co-expression of the furin cDNA. These data provide evidence that the ADAMTS-1 precursor is processed in vivo by furin endopeptidase in the secretory pathway. Consequently, ADAMTS-1 is an active metalloprotease that is associated with the extracellular matrix. This study strongly suggests that ADAMTS-1 may play a role in the inflammatory process through its protease activity.  (+info)

Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. (5/290)

OBJECTIVE: Tissue inhibitors of metalloproteinases (TIMPs) are downregulated in the failing human heart. The objective of the present study was to test the hypothesis that cytokines might be involved in the regulation of TIMPs in cardiac cells. METHODS: Neonatal Sprague-Dawley rat ventricular cells were exposed to 100 units/ml tumor necrosis factor-alpha and/or 5 ng/ml interleukin-1 beta. The mRNA and protein expression of TIMPs-1-4 and disintegrin metalloproteinase was analyzed using Northern blot, ELISA and/or Western blot, respectively. Proteolytic activity and extracellular matrix degradation and turnover were determined using gelatin zymography and pulse-chase experiments. RESULTS: The TIMP-1 mRNA was upregulated in cardiac cells, while TIMP-1 protein levels were unchanged in myocytes but downregulated in non-myocytes. The TIMP-2 expression did not change with the cytokine treatment. TIMP-3 was downregulated at both the mRNA and protein levels in cardiac cells. TIMP-4 protein was transiently increased and then returned to control level. In contrast, disintegrin metalloproteinase mRNA and protein were significantly upregulated in those cells. The gelatinolytic activity and extracellular matrix protein degradation were significantly increased. CONCLUSIONS: Tumor necrosis factor-alpha and interleukin-1 beta regulate the expression of TIMPs and disintegrin metalloproteinase, which may in turn contribute to the increased matrix degradation in cardiac cells. Since heart failure in humans is characterized by both re-expression of myocardial cytokines and remodeling of the extracellular matrix, those in vitro results suggest a potential role for those cytokines in the regulation of extracellular matrix remodeling and therefore in the transition to the end-stage heart failure phenotype.  (+info)

METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. (6/290)

We have studied two related proteins that contain a repeated amino acid motif homologous to the anti-angiogenic type 1 repeats of thrombospondin-1 (TSP1). Complete sequence analysis revealed no other similarities with TSP1, but identified unique signal sequences, as well as metalloprotease and disintegrin-like domains in the NH(2) termini. We named these proteins METH-1 and METH-2 due to the novel combination of metalloprotease and thrombospondin domains. Overall amino acid sequence identity between METH-1 and METH-2 is 51. 7%, yet transcript distribution revealed non-overlapping patterns of expression in tissues and cultured cell lines. To characterize these proteins functionally, we isolated full-length cDNAs, produced recombinant protein, and generated antisera to the recombinant proteins. Both METH-1 and METH-2 represent single copy genes, which encode secreted and proteolytically processed proteins. METH proteins suppressed fibroblast growth factor-2-induced vascularization in the cornea pocket assay and inhibited vascular endothelial growth factor-induced angiogenesis in the chorioallantoic membrane assay. Suppression of vessel growth in both assays was considerably greater than that mediated by either thrombospondin-1 or endostatin on a molar basis. Consistent with an endothelial specific response, METH-1 and METH-2 were shown to inhibit endothelial cell proliferation, but not fibroblast or smooth muscle growth. We propose that METH-1 and METH-2 represent a new family of proteins with metalloprotease, disintegrin, and thrombospondin domains. The distinct distribution of each gene product suggests that each has evolved distinct regulatory mechanisms that potentially allow for fine control of activity during distinct physiological and pathological states.  (+info)

ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. (7/290)

We report the primary structure of three novel, putative zinc metalloproteases designated ADAM-TS5, ADAM-TS6, and ADAM-TS7. All have a similar domain organization, comprising a preproregion, a reprolysin-type catalytic domain, a disintegrin-like domain, a thrombospondin type-1 (TS) module, a cysteine-rich domain, a spacer domain without cysteine residues, and a COOH-terminal TS module. These genes are differentially regulated during mouse embryogenesis and in adult tissues, with Adamts5 highly expressed in the peri-implantation period in embryo and trophoblast. These proteins are similar to four other cognate gene products, defining a distinct family of human reprolysin-like metalloproteases, the ADAM-TS family. The other members of the family are ADAM-TS1, an inflammation-induced gene, the procollagen I/II amino-propeptide processing enzyme (PCINP, ADAM-TS2), and proteins predicted by the KIAA0366 and KIAA0688 genes (ADAM-TS3 and ADAM-TS4). Individual ADAM-TS members differ in the number of COOH-terminal TS modules, and some have unique COOH-terminal domains. The ADAM-TS genes are dispersed in human and mouse genomes.  (+info)

MDC-L, a novel metalloprotease disintegrin cysteine-rich protein family member expressed by human lymphocytes. (8/290)

The metalloprotease disintegrin cysteine-rich (MDC) proteins are a recently identified family of transmembrane proteins that function in proteolytic processing of cell surface molecules and in cell adhesion. Since lymphocytes must interact with a constantly changing environment, we hypothesized that lymphocytes would express unique MDC proteins. To identify MDC proteins expressed in human lymph node, a polymerase chain reaction-based strategy combined with degenerate oligonucleotide primers was employed. We report here the identification of MDC-L (ADAM 23), a novel member of the MDC protein family. The results obtained from cDNA cloning and Northern blot analysis of mRNA isolated from various lymphoid tissues indicate that a 2.8-kilobase mRNA encoding a transmembrane form, MDC-Lm, and a 2.2-kilobase mRNA encoding a secreted form, MDC-Ls, are expressed in a tissue-specific manner. MDC-L mRNA was shown to be predominantly expressed in secondary lymphoid tissues, such as lymph node, spleen, small intestine, stomach, colon, appendix, and trachea. Furthermore, immunohistochemical staining with an anti-MDC-L antibody demonstrated that cells with typical lymphocyte morphology are responsible for expression of the MDC-L antigen in these lymphoid tissues. MDC-Lm was found to be expressed on the surface of human peripheral blood lymphocytes and transformed B- and T-lymphocyte cell lines as an 87-kDa protein. Thus, we have identified a novel lymphocyte-expressed MDC protein family member.  (+info)