Stenosis-dependent role of nitric oxide and prostaglandins in chronic renal ischemia. (9/91)

The role of nitric oxide (NO) and prostaglandins (PG) in modifying renal hemodynamics was examined in clipped and nonclipped kidneys of unilateral renal artery stenosis. Chronic unilateral renal ischemia was established by 4-wk-clipping the left renal artery of canine kidneys, and renal interstitial nitrate+nitrite and PGE(2) contents were evaluated by the microdialysis technique. Unilateral renal artery stenosis caused 45 +/- 1 and 73 +/- 1% decrements in renal plasma flow (RPF) in moderately and severely clipped kidneys and 21 +/- 3% decrements in nonclipped kidneys with severe stenosis. Renal nitrate+nitrite decreased in moderately (-31 +/- 1%) and severely clipped kidneys (-63 +/- 4%). N(omega)-nitro-L-arginine methyl ester reduced RPF (-56 +/- 3%) and glomerular filtration rate (GFR; -54 +/- 3%) in moderately clipped kidneys, whereas this inhibitory effect was abolished in severely clipped kidneys. In contrast, renal PGE(2) contents increased modestly in moderate clipping and were markedly elevated in severely clipped kidneys (from 111 +/- 7 to 377 +/- 22 pg/ml); sulpyrine impaired renal hemodynamics only in severely clipped kidneys. In contralateral nonclipped kidneys, although renal PGE(2) was not increased, sulpyrine reduced RPF (-32 +/- 1%) and GFR (-33 +/- 3%) in severe stenosis. Collectively, NO plays a substantial role in maintaining renal hemodynamics both under basal condition and in moderate renal artery stenosis, whereas the contributory role shifts from NO to PG as renal artery stenosis progresses. Furthermore, because intrarenal angiotensin II is reported to increase in nonclipped kidneys, unilateral severe ischemia may render the nonclipped kidney susceptible to PG inhibition.  (+info)

Intravenous dipyrone for the acute treatment of episodic tension-type headache: a randomized, placebo-controlled, double-blind study. (10/91)

Acute headaches are responsible for a significant percentage of the case load at primary care units and emergency rooms in Brazil. Dipyrone (metamizol) is easily available in these settings, being the most frequently used drug. We conducted a randomized, placebo-controlled, double-blind study to assess the effect of dipyrone in the acute treatment of episodic tension-type headache. Sixty patients were randomized to receive placebo (intravenous injection of 10 ml saline) or 1 g dipyrone in 10 ml saline. We used seven parameters of analgesic evaluation. The patients receiving dipyrone showed a statistically significant improvement (P<0.05) of pain compared to placebo up to 30 min after drug administration. The therapeutic gain was 30% in 30 min and 40% in 60 min. The number of patients needed to be treated for at least one to have benefit was 3.3 in 30 min and 2.2 in 60 min. There were statistically significant reductions in the recurrence (dipyrone = 25%, placebo = 50%) and use of rescue medication (dipyrone = 20%, placebo = 47.6%) for the dipyrone group. Intravenous dipyrone is an effective drug for the relief of pain in tension-type headache and its use is justified in the emergency room setting.  (+info)

Antinociceptive effects of Cremophor EL orally administered to mice. (11/91)

Surfactants are frequently used to improve solubilization of lipophilic drugs. Cremophor EL (CrEL) is a polyoxyethylated castor oil surfactant used to solubilize water-insoluble drugs such as anesthetic, antineoplastic, immunosuppressive and analgesic drugs, vitamins and new synthetic compounds, including potential analgesics. The antinociceptive effect of CrEL (3.2, 6.4 and 10.6 g/kg, in 10 ml/kg body weight, by gavage) on the abdominal writhing response induced by intraperitoneal administration of acetic acid (0.8%, 10 ml/kg body weight) and on the tail immersion test was investigated in mice. Control animals received castor oil (10 ml/kg body weight) or saline (0.9% NaCl, 10 ml/kg body weight). CrEL reduced nociception in a dose-dependent manner in both tests. At 10.6 g/kg, CrEL caused antinociception similar to that induced by dipyrone (300 mg/kg, by gavage) in the abdominal writhing test, and antinociception similar to that induced by morphine (20 mg/kg, by gavage) in the tail immersion test. The effect of castor oil was similar to that of saline in both assays. These data indicate that the appropriate controls should be used when evaluating the effects of potential antinociceptive agents dissolved in CrEL.  (+info)

Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fibers causes retrograde mechanical nociceptor sensitization. (12/91)

The present study investigated whether activation of presynaptic N-methyl-d-aspartate (NMDA) receptors in the spinal cord produces a retrograde nociceptor sensitization (hypernociception) to mechanical nonnoxious stimulus. By using an electronic version of the von Frey hair test (pressure meter), s.c. intraplantar administration of prostaglandin E(2) (PGE(2)) (50-400 ng per paw) evoked a dose-related ipsilateral paw hypernociception. In contrast, intrathecal (i.t.) administration of NMDA (5-80 ng) and PGE(2) (15-150 ng) evoked dose-related bilateral paw hypernociception. The s.c. intraplantar administration of dipyrone (80-320 microg per paw) or morphine (3 and 9 microg per paw), usually used to antagonize peripheral PGE(2) (100 ng per paw), induced hypernociception and also antagonized the ipsilateral (without affecting the contralateral) paw hypernociception induced by i.t. injections of NMDA (40 ng) or PGE(2) (50 ng). These doses of drugs did not modify the basal mechanical sensitivity of control paws. This result shows that intraspinal NMDA or PGE(2) produces sensitization of the primary sensory neuron in response to mechanical stimulation. In a second series of experiments it was shown that the i.t. treatment with NaV1.8 (SNS/PN3) sodium channel antisense oligodeoxynucleotides, but not mismatch oligodeoxynucleotides, decreased the mRNA expression of sodium tetrodotoxin-resistant channels on the dorsal root ganglia and abolished the mechanical hypernociception induced by i.t. administration of NMDA. Thus, our results support the suggestion that glutamate release in the spinal cord during inflammation causes retrograde hypernociception of nociceptors associated with sodium tetrodotoxin-resistant channels in primary nociceptive sensory neurons.  (+info)

Determination of dipyrone in pharmaceutical products by flow injection analysis with potentiometric detection. (13/91)

This work describes an FIA potentiometric procedure for the quantification of dipyrone in pharmaceutical products. For the detector, a tubular electrode comprising a polymeric membrane containing tetraoctylammonium as an electroactive material (5% w/w), dibutylphtalate as a mediator solvent (65% w/w) and PVC (30% w/w) directly applied above a graphite conductor support was used. This unit was incorporated into a monochannel FI-system with a 0.1 mol/L phosphate buffer solution (pH = 5.2) as the carrier solution. The electrode showed a linear response from 8.0 x 10(-4) to 10(-1) mol/L dipyrone, a slope of 62.1 +/- 0.2 mV/dec in pH 5.2 units, an injection volume of 500 microL and a carrier flow-rate of 6 mL/min. This procedure was applied to the analysis of pharmaceutical formulations (oral and injectable) containing dipyrone; the obtained results gave a relative error of less than 3.9% and coefficients of variation less than 1% and 5%, respectively, for the FIA and classical iodometric methods.  (+info)

Do endogenous opioids and nitric oxide participate in the anticonvulsant action of dipyrone? (14/91)

It was previously reported that systemic administration of dipyrone inhibited the tonic component of generalized tonic-clonic seizures in both the electroshock and the audiogenic seizure models. The aim of the present study was to investigate the mechanisms involved in the anticonvulsant action of dipyrone by assessing the role of nitric oxide and opioids in the electroshock (female 60- to 90-day-old Wistar rats, N = 5-11) and audiogenic seizure (female 60- to 90-day-old Wistar audiogenic rats, N = 5-11) models of epilepsy. Naloxone (5 mg/kg, sc) significantly reversed the anticonvulsant effect of dipyrone in rats submitted to the induction of audiogenic seizures (ANOVA/Bonferroni's test), suggesting the involvement of opioid peptides in this action. In the electroshock model no reversal of the anticonvulsant effect of dipyrone by naloxone (5 mg/kg, sc) was demonstrable. The acute (120 mg/kg, ip) and chronic (25 mg/kg, ip, twice a day/4 days) administration of L-NOARG did not reverse the anticonvulsant action of dipyrone in the audiogenic seizure model, suggesting that the nitric oxide pathway does not participate in such effect. Indomethacin (10, 20 and 30 mg/kg, ip) used for comparison had no anticonvulsant effect in the audiogenic seizure model. In conclusion, opioid peptides but not nitric oxide seem to be involved in the anticonvulsant action of dipyrone in audiogenic seizures.  (+info)

Detection of IgE antibodies specific for 1-phenyl-2,3-dimethyl-3-pyrazoline-5-one by RAST: a serological diagnostic method for sensitivity to pyrazoline drugs. (15/91)

Certain adverse reactions to pyrazoline drugs resemble IgE-mediated hypersensitivity. However, convincing evidence of antigen-antibody interactions is not fully demonstrated. In this study, IgE antibodies specific for 1-phenyl-2,3-dimethyl-3-pyrazoline-5-one have been found in 17 out of 19 serum samples from individuals sensitive to pyrazoline drugs with 4-aminoantipyrine discs by Radio Allergo Sorbent Test (RAST). In contrast, we have not found any positive results from 10 normal donors without sensitivity to pyrazoline drugs after ingestion of metamizol 500 mg/day for 14 days. Therefore, our results provide further evidence in favor of an IgE-dependent mechanism in patients suffering from sensitivity to pyrazoline drugs. The determination of specific IgE antibodies could be used as a serodiagnostics method.  (+info)

Evidence of the effect of dipyrone on the central nervous system as a determinant of delayed gastric emptying observed in rats after its administration. (16/91)

Dipyrone administered intravenously (iv) delays gastric emptying (GE) in rats. The objectives of the present study were to assess: 1) the effect of the dose of dipyrone and time after its iv administration on GE in rats, 2) the effect of subdiaphragmatic vagotomy (VgX) and bilateral electrolytic lesion of the paraventricular nucleus (PVNX) on the delayed GE induced by the drug, and 3) the intracerebroventricular (icv) action of dipyrone and of one of its metabolites, 4-aminoantipyrine on GE. Male Wistar rats received saline labeled with phenol red intragastrically as a test meal. GE was indirectly assessed by the determination of percent gastric retention (GR) of the test meal 10 min after administration by gavage. Dipyrone delays GE in a dose- and time-dependent manner. Thirty minutes after the iv administration of 80 mg/kg dipyrone, the animals showed significantly higher GR (mean = 62.6%) compared to those receiving vehicle (31.5%). VgX and PVNX significantly reduced the iv effect of 80 mg/kg dipyrone (mean %GR: VgX = 28.3 vs Sham = 55.5 and PVNX = 34.5 vs Sham = 52.2). Icv administration of 4 mol dipyrone caused a significant increase in GR (54.1%) of the test meal 10 min later, whereas administration of 4 mol 4-aminoantipyrine had no effect (34.4%). Although the dipyrone dose administered icv was 16 times lower than that applied iv, for the same time of action (10 min), the GR of animals that received the drug icv (54.1%) or iv (54.5%) did not differ significantly. In conclusion, the present results suggest that the effect of dipyrone in delaying GE is due to the action of the drug on the central nervous system, with the participation of the PVN and of the vagus nerve.  (+info)