Life history and developmental processes in the basidiomycete Coprinus cinereus. (65/1809)

Coprinus cinereus has two main types of mycelia, the asexual monokaryon and the sexual dikaryon, formed by fusion of compatible monokaryons. Syngamy (plasmogamy) and karyogamy are spatially and temporally separated, which is typical for basidiomycetous fungi. This property of the dikaryon enables an easy exchange of nuclear partners in further dikaryotic-monokaryotic and dikaryotic-dikaryotic mycelial fusions. Fruiting bodies normally develop on the dikaryon, and the cytological process of fruiting-body development has been described in its principles. Within the specialized basidia, present within the gills of the fruiting bodies, karyogamy occurs in a synchronized manner. It is directly followed by meiosis and by the production of the meiotic basidiospores. The synchrony of karyogamy and meiosis has made the fungus a classical object to study meiotic cytology and recombination. Several genes involved in these processes have been identified. Both monokaryons and dikaryons can form multicellular resting bodies (sclerotia) and different types of mitotic spores, the small uninucleate aerial oidia, and, within submerged mycelium, the large thick-walled chlamydospores. The decision about whether a structure will be formed is made on the basis of environmental signals (light, temperature, humidity, and nutrients). Of the intrinsic factors that control development, the products of the two mating type loci are most important. Mutant complementation and PCR approaches identified further genes which possibly link the two mating-type pathways with each other and with nutritional regulation, for example with the cAMP signaling pathway. Among genes specifically expressed within the fruiting body are those for two galectins, beta-galactoside binding lectins that probably act in hyphal aggregation. These genes serve as molecular markers to study development in wild-type and mutant strains. The isolation of genes for potential non-DNA methyltransferases, needed for tissue formation within the fruiting body, promises the discovery of new signaling pathways, possibly involving secondary fungal metabolites.  (+info)

Three-dimensional reconstruction of tetraploid<-->diploid chimaeric mouse blastocysts. (66/1809)

Studies of tetraploid<-->diploid (4n<-->2n) mouse chimaeras have demonstrated unequal contributions of 4n cells to different tissues of the midgestation conceptus. Such a pattern has also been reported in chimaeras as early as E3.5d, which show an enhanced contribution of 4n cells to the mural trophectoderm (Everett & West, 1996). In this study, sectioned 4n<-->2n and 2n<-->2n control chimaeric blastocysts were digitised and reconstructed in 3 dimensions (3-D). The 3-D images revealed only limited mixing of cells from the 2 contributing embryos of individual blastocysts in both chimaera groups. Consequently, the distribution pattern of the 2 cell types was dependent on the spatial relationship between the orientation of the blastocyst and the boundary between the 2 clusters of cells. The distribution patterns observed were not strikingly different for 4n<-->2n and 2n<-->2n chimaeras, each showing some transgenic positive cell contribution in all 3 identifiable developmental lineages. It was notable, however, that in all 4n<-->2n blastocysts at least some 4n cells were located adjacent to the blastocyst cavity. Such a consistent pattern was not evident in 2n<-->2n chimaeras. This study has demonstrated the value of 3-D reconstructions for the analysis of spatial relationships of 2 cell populations in chimaeric mouse blastocysts.  (+info)

Deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease. (67/1809)

The complement component C4 genes located in the major histocompatibility complex (MHC) class III region exhibit an unusually complex pattern of variations in gene number, gene size, and nucleotide polymorphism. Duplication or deletion of a C4 gene always concurs with its neighboring genes serine/threonine nuclear protein kinase RP, steroid 21-hydroxylase (CYP21), and tenascin (TNX), which together form a genetic unit termed the RCCX module. A detailed molecular genetic analysis of C4A and C4B and RCCX modular arrangements was correlated with immunochemical studies of C4A and C4B protein polymorphism in 150 normal Caucasians. The results show that bimodular RCCX has a frequency of 69%, whereas monomodular and trimodular RCCX structures account for 17.0 and 14.0%, respectively. Three quarters of C4 genes harbor the endogenous retrovirus HERV-K(C4). Partial deficiencies of C4A and C4B, primarily due to gene deletions and homoexpression of C4A proteins, have a combined frequency of 31.6%. This is probably the most common variation of gene dosage and gene size in human genomes. The seven RCCX physical variants create a great repertoire of haplotypes and diploid combinations, and a heterozygosity frequency of 69.4%. This phenomenon promotes the exchange of genetic information among RCCX constituents that is important in homogenizing the structural and functional diversities of C4A and C4B proteins. However, such length variants may cause unequal, interchromosomal crossovers leading to MHC-associated diseases. An analyses of the RCCX structures in 22 salt-losing, congenital adrenal hyperplasia patients revealed a significant increase in the monomodular structure with a long C4 gene linked to the pseudogene CYP21A, and bimodular structures with two CYP21A, which are likely generated by recombinations between heterozygous RCCX length variants.  (+info)

Oxalate oxidases and differentiating surface structure in wheat: germins. (68/1809)

Oxalate oxidases (OXOs) have been found to be concentrated in the surface tissues of wheat embryos and grains: germin is concentrated in root and leaf sheaths that surround germinated embryos; pseudogermin (OXO-psi) is concentrated in the epidermis and bracts that 'encircle' mature grains. Most strikingly, the epidermal accumulation of OXO-psi was found to presage the transition of a delicate 'skin', similar to the fragile epidermis of human skin, into the tough shell (the miller's 'beeswing') that is typical of mature wheat grains. A narrow range of oxalate concentration (1--2 mM) in the hydrated tissues of major crop cereals (barley, maize, oat, rice, rye and wheat) contrasted with wide variations in their OXO expression, e.g. cold-tolerant and cold-sensitive varieties of maize have similar oxalate contents but the former was found to contain approx. 20-fold more germin than did the latter. Well-known OXOs in sorghum, a minor cereal, and beet, a dicotyledon, were found to have little antigenic relatedness to the germins, but the beet enzyme did share some of the unique stability properties that are peculiar to the germin-like OXOs that are found only in the major crop cereals. Their concentration in surface structures of domesticated wheat suggests a biochemical role for germin-like OXOs: programmed cell death in surface tissues might be a constitutive as well as an adaptive form of differentiation that helps to produce refractory barriers against tissue invasion by predators. Incidental to the principal investigation, and using an OXO assay (oxalate-dependent release of CO(2)) that did not rely on detecting H(2)O(2), which is often fully degraded in cell extracts, it was found that OXO activity in soluble extracts of wheat was manifested only in standard solution assays if the extract was pretreated in a variety of ways, which included preincubation with pepsin or highly substituted glucuronogalactoarabinoxylans (cell-wall polysaccharides).  (+info)

The Saccharomyces cerevisiae RDN1 locus is sequestered from interchromosomal meiotic ectopic recombination in a SIR2-dependent manner. (69/1809)

Meiotic ectopic recombination occurs at similar frequencies among many sites in the yeast genome, suggesting that all loci are similarly accessible to homology searching. In contrast, we found that his3 sequences integrated in the RDN1 (rDNA) locus were unusually poor participants in meiotic recombination with his3 sequences at other sites. We show that the low rate of meiotic ectopic recombination resulted from the poor ability of RDN1::his3 to act as a donor sequence. SIR2 partially repressed interchromosomal meiotic ectopic recombination at RDN1, consistent with its role in regulating recombination, gene expression, and retrotransposition within RDN1. We propose that RDN1 is physically sequestered from meiotic homology searching mechanisms.  (+info)

Zygotic associations and multilocus statistics in a nonequilibrium diploid population. (70/1809)

The usual approach to characterizing and estimating multilocus associations in a diploid population assumes that the population is in Hardy-Weinberg equilibrium. The purpose of this study is to develop a set of summary statistics that can be used to characterize and estimate the multilocus associations in a nonequilibrium population. The concept of "zygotic associations" is first expanded to facilitate the development. The summary statistics are calculated using the distribution of a random variable, the number of heterozygous loci (K) found in diploid individuals in the population. In particular, the variance of K consists of single-locus and multilocus components with the latter being the sum of zygotic associations between pairs of loci. Simulation results show that the multilocus associations in the variance of K are detectable in a sample of moderate size (> or =30) when the sum of all pairwise zygotic associations is greater than zero and when gene frequency is intermediate. The method presented here is a generalization of the well-known development for the Hardy-Weinberg equilibrium population and thus may be of more general use in elucidating the multilocus organizations in nonequilibrium and equilibrium populations.  (+info)

Model selection for quantitative trait locus analysis in polyploids. (71/1809)

Over the years, substantial gains have been made in locating regions of agricultural genomes associated with characteristics, diseases, and agroeconomic traits. These gains have relied heavily on the ability to statistically estimate the association between DNA markers and regions of a genome (quantitative trait loci or QTL) related to a particular trait. The majority of these advances have focused on diploid species, even though many important agricultural crops are, in fact, polyploid. The purpose of our work is to initiate an algorithmic approach for model selection and QTL detection in polyploid species. This approach involves the construction of all possible chromosomal configurations (models) that may result in a gamete, model reduction based on estimation of marker dosage from progeny data, and lastly model selection. While simplified for initial explanation, our approach has demonstrated itself to be extendible to many breeding schemes and less restricted settings.  (+info)

Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. (72/1809)

Using a set of genomic TY1A-lacZ fusions, we show that Ste12 and Tec1, two transcription factors of the Kss1 mitogen-activated protein kinase (MAPK) cascade activate Ty1 transcription in Saccharomyces cerevisiae. This result strongly suggests that the invasive-filamentous pathway regulates Ty1 transcription. Since this pathway is active in diploid cells, we suspected that Ty1 transposition might occur in this cell type, despite the fact that this event has been never reported before (unless activated by heterologous promoters such as that of GAL1). We demonstrate here that constitutive activation of the invasive-filamentous pathway by the STE11-4 allele or by growth in low-nitrogen medium induces Ty1 transcription and retrotransposition in diploid cells. We show that Ty1 retrotransposition can be activated by STE11-4 in haploid cells as well. Our findings provide the first evidence that Ty1 retrotransposition can be activated by environmental signals that affect differentiation. Activation of the Kss1 MAPK cascade by stress is known to cause filament formation that permits the search for nutrients away from the colonization site. We propose that activation of Ty1 retrotransposition by this cascade could play a role in adaptive mutagenesis in response to stress.  (+info)