Prolyl tripeptidyl peptidase from Porphyromonas gingivalis. A novel enzyme with possible pathological implications for the development of periodontitis. (1/502)

Porphyromonas gingivalis possesses a complex proteolytic system, which is essential for both its growth and evasion of host defense mechanisms. In this report we characterized, both at a protein and genomic level, a novel peptidase of this system with prolyl tripeptidyl peptidase activity. The enzyme was purified to homogeneity, and its enzymatic activity and biochemical properties were investigated. The amino acid sequence at the amino terminus and of internal peptide fragments enabled identification of the gene encoding this enzyme, which we refer to as PtpA for prolyl tripeptidyl peptidase A. The gene encodes an 82-kDa protein, which contains a GWSYGG motif, characteristic for members of the S9 prolyl oligopeptidase family of serine proteases. However, it does not share any structural similarity to other tripeptidyl peptidases, which belong to the subtilisin family. The production of prolyl tripeptidyl peptidase may contribute to the pathogenesis of periodontal tissue destruction through the mutual interaction of this enzyme, host and bacterial collagenases, and dipeptidyl peptidases in the degradation of collagen during the course of infection.  (+info)

Mutational analysis of the defective protease in classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. (2/502)

The late-infantile form of neuronal ceroid lipofuscinosis (LINCL) is a progressive and ultimately fatal neurodegenerative disease of childhood. The defective gene in this hereditary disorder, CLN2, encodes a recently identified lysosomal pepstatin-insensitive acid protease. To better understand the molecular pathology of LINCL, we conducted a genetic survey of CLN2 in 74 LINCL families. In 14 patients, CLN2 protease activities were normal and no mutations were identified, suggesting other forms of NCL. Both pathogenic alleles were identified in 57 of the other 60 LINCL families studied. In total, 24 mutations were associated with LINCL, comprising six splice-junction mutations, 11 missense mutations, 3 nonsense mutations, 3 small deletions, and 1 single-nucleotide insertion. Two mutations were particularly common: an intronic G-->C transversion in the invariant AG of a 3' splice junction, found in 38 of 115 alleles, and a C-->T transition in 32 of 115 alleles, which prematurely terminates translation at amino acid 208 of 563. An Arg-->His substitution was identified, which was associated with a late age at onset and protracted clinical phenotype, in a number of other patients originally diagnosed with juvenile NCL.  (+info)

Increased collagenase and dipeptidyl peptidase I activity in leucocytes from healthy elderly people. (3/502)

The incidence of infectious diseases increases with ageing. The enzymatic activity of leucocytes may have a relevant role in the morbidity and mortality due to infections in the elderly. In this study we have compared the activity of enzymes involved in the inflammatory response in leucocytes from young and elderly women. A total of 35 healthy females was studied, 20 volunteers aged 78-98 years (mean 89.1 years) and 15 young controls aged 19-34 years (mean 26 years). All of them were in good clinical condition, without any acute or chronic disease. Intracellular enzyme activity was analysed by flow cytometry in leucocytes from young and elderly women. The enzyme substrates employed were for oxidative burst, L-aminopeptidase, collagenase, cathepsin B, C, D and, G and dipeptidyl peptidase I. The intracellular enzyme activity assessed by flow cytometry in leucocytes from young and elderly women was similar, as far as oxidative burst, L-aminopeptidase, cathepsin B, C, D and G are concerned. An increased collagenase activity was detected in granulocytes from elders. The mean fluorescence channels for this enzyme corresponded to 86 +/- 23 and 60 +/- 15 in cells from elders and controls, respectively (P = 0.01224). An increased dipeptidyl peptidase I activity was detected in lymphocytes from elderly women. The corresponding values for this enzyme in elders and the young were 65.9 +/- 43.3 and 17.3 +/- 5, respectively (P = 0. 0036). The proper functional activity of intracellular enzymes involved in inflammatory responses is likely to be determinant for successful ageing.  (+info)

Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. (4/502)

Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease that has been implicated in the processing of granzymes, which are neutral serine proteases exclusively expressed in the granules of activated cytotoxic lymphocytes. In this report, we show that cytotoxic lymphocytes derived from DPPI-/- mice contain normal amounts of granzymes A and B, but these molecules retain their prodipeptide domains and are inactive. Cytotoxic assays with DPPI-/- effector cells reveal severe defects in the induction of target cell apoptosis (as measured by [(125)I]UdR release) at both early and late time points; this defect is comparable to that detected in perforin-/- or granzyme A-/- x B-/- cytotoxic lymphocytes. DPPI therefore plays an essential role in the in vivo processing and activation of granzymes A and B, which are required for cytotoxic lymphocyte granule-mediated apoptosis.  (+info)

Giant proteases: beyond the proteasome. (5/502)

Proteasomes and related proteases are thought to be the principal machinery responsible for intracellular protein degradation. A new class of giant proteases has been discovered that can augment the catabolic functions of proteasomes and, under some conditions, may even substitute for proteasomes altogether.  (+info)

Location of the binding site for chloride ion activation of cathepsin C. (6/502)

Cathepsin C, a tetrameric lysosomal dipeptidyl-peptide hydrolase, is activated by chloride ion. The activation is shown here to be specific and pH-dependent, dissociation constants for chloride being lower at low pH. Bound chloride decreases the Km for the hydrolysis of chromophore labelled substrates without any significant change in Vmax, confirming its involvement in substrate binding. Determination of the kinetic parameters of chloride activation, using unlabelled substrates, has enabled its site of action to be located. The lower Km for the hydrolysis of simple amide substrates in the presence of Cl- shows that the S sites are involved. Possible involvement of the S' sites is excluded by the finding that the Km for the nucleophile in the transferase reaction is unaffected by chloride. The rates of inhibition by E-64 and iodoacetate are both chloride-dependent and, from the structure of the papain-E-64 complex, it is concluded that chloride binds close to the S2 site. The binding of guanidinium ion, a positively charged inhibitor, to the S site is dependent on chloride. Based on these results, a model is proposed to explain the chloride activation of cathepsin C. The possible physiological role of chloride in the regulation of proteolysis in the lysosome is discussed.  (+info)

X-prolyl dipeptidyl aminopeptidase gene (pepX) is part of the glnRA operon in Lactobacillus rhamnosus. (7/502)

A peptidase gene expressing X-prolyl dipeptidyl aminopeptidase (PepX) activity was cloned from Lactobacillus rhamnosus 1/6 by using the chromogenic substrate L-glycyl-L-prolyl-beta-naphthylamide for screening of a genomic library in Escherichia coli. The nucleotide sequence of a 3.5-kb HindIII fragment expressing the peptidase activity revealed one complete open reading frame (ORF) of 2,391 nucleotides. The 797-amino-acid protein encoded by this ORF was shown to be 40, 39, and 36% identical with PepXs from Lactobacillus helveticus, Lactobacillus delbrueckii, and Lactococcus lactis, respectively. By Northern analysis with a pepX-specific probe, transcripts of 4.5 and 7.0 kb were detected, indicating that pepX is part of a polycistronic operon in L. rhamnosus. Cloning and sequencing of the upstream region of pepX revealed the presence of two ORFs of 360 and 1,338 bp that were shown to be able to encode proteins with high homology to GlnR and GlnA proteins, respectively. By multiple primer extension analyses, the only functional promoter in the pepX region was located 25 nucleotides upstream of glnR. Northern analysis with glnA- and pepX-specific probes indicated that transcription from glnR promoter results in a 2.0-kb dicistronic glnR-glnA transcript and also in a longer read-through polycistronic transcript of 7.0 kb that was detected with both probes in samples from cells in exponential growth phase. The glnA gene was disrupted by a single-crossover recombinant event using a nonreplicative plasmid carrying an internal part of glnA. In the disruption mutant, glnRA-specific transcription was derepressed 10-fold compared to the wild type, but the 7.0-kb transcript was no longer detectable with either the glnA- or pepX-specific probe, demonstrating that pepX is indeed part of glnRA operon in L. rhamnosus. Reverse transcription-PCR analysis further supported this operon structure. An extended stem-loop structure was identified immediately upstream of pepX in the glnA-pepX intergenic region, a sequence that showed homology to a 23S-5S intergenic spacer and to several other L. rhamnosus-related entries in data banks.  (+info)

N-terminally modified glucagon-like peptide-1(7-36) amide exhibits resistance to enzymatic degradation while maintaining its antihyperglycaemic activity in vivo. (8/502)

Glucagon-like peptide-1(7-36)amide (tGLP-1) is inactivated by dipeptidyl peptidase (DPP) IV by removal of the NH(2)-terminal dipeptide His(7)-Ala(8). We examined the degradation of NH(2)-terminally modified His(7)99% of His(7)-glucitol tGLP-1 remained intact at 12 h. His(7)-glucitol tGLP-1 was similarly resistant to plasma degradation in vitro. His(7)-glucitol tGLP-1 showed greater resistance to degradation in vivo (92% intact) compared to tGLP-1 (27% intact) 10 min after i.p. administration to Wistar rats. Glucose homeostasis was examined following i.p. injection of both peptides (12 nmol/kg) together with glucose (18 mmol/kg). Plasma glucose concentrations were significantly reduced and insulin concentrations elevated following peptides administration compared with glucose alone. The area under the curve (AUC) for glucose for controls (AUC 691+/-35 mM/min) was significantly lower after administration of tGLP-1 and His(7)-glucitol tGLP-1 (36 and 49% less; AUC 440+/-40 and 353+/-31 mM/min, respectively; P<0.01). This was associated with a significantly higher AUC for insulin (98-99% greater; AUC 834+/-46 and 838+/-39 ng/ml/min, respectively; P<0.01) after tGLP-1 and His(7)-glucitol tGLP-1 administration compared to controls (421+/-30 ng/ml/min). In conclusion, His(7)-glucitol tGLP-1 resists plasma DPP IV degradation while retaining potent antihyperglycaemic and insulin-releasing activities in vivo.  (+info)