Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. (49/954)

Avocado (Persea americana Mill. cv Lula) is a climacteric fruit that exhibits a rise in ethylene as the fruit ripens. This rise in ethylene is followed by an increase in abscisic acid (ABA), with the highest level occurring just after the peak in ethylene production. ABA is synthesized from the cleavage of carotenoid precursors. The cleavage of carotenoid precursors produces xanthoxin, which can subsequently be converted into ABA via ABA-aldehyde. Indirect evidence indicates that the cleavage reaction, catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED), is the regulatory step in ABA synthesis. Three genes encoding NCED cleavage-like enzymes were cloned from avocado fruit. Two genes, PaNCED1 and PaNCED3, were strongly induced as the fruit ripened. The other gene, PaNCED2, was constitutively expressed during fruit ripening, as well as in leaves. This gene lacks a predicted chloroplast transit peptide. It is therefore unlikely to be involved in ABA biosynthesis. PaNCED1 was induced by water stress, but expression of PaNCED3 was not detectable in dehydrated leaves. Recombinant PaNCED1 and PaNCED3 were capable of in vitro cleavage of 9-cis-xanthophylls into xanthoxin and C(25)-apocarotenoids, but PaNCED2 was not. Taken together, the results indicate that ABA biosynthesis in avocado is regulated at the level of carotenoid cleavage.  (+info)

C/EBPbeta, when expressed from the C/ebpalpha gene locus, can functionally replace C/EBPalpha in liver but not in adipose tissue. (50/954)

Knockout of C/EBPalpha causes a severe loss of liver function and, subsequently, neonatal lethality in mice. By using a gene replacement approach, we generated a new C/EBPalpha-null mouse strain in which C/EBPbeta, in addition to its own expression, substituted for C/EBPalpha expression in tissues. The homozygous mutant mice C/ebpalpha(beta/beta) are viable and fertile and show none of the overt liver abnormalities found in the previous C/EBPalpha-null mouse line. Levels of hepatic PEPCK mRNA are not different between C/ebpalpha(beta/beta) and wild-type mice. However, despite their normal growth rate, C/ebpalpha(beta/beta) mice have markedly reduced fat storage in their white adipose tissue (WAT). Expression of two adipocyte-specific factors, adipsin and leptin, is significantly reduced in the WAT of C/ebpalpha(beta/beta) mice. In addition, expression of the non-adipocyte-specific genes for transferrin and cysteine dioxygenase is reduced in WAT but not in liver. Our study demonstrates that when expressed from the C/ebpalpha gene locus, C/EBPbeta can act for C/EBPalpha to maintain liver functions during development. Moreover, our studies with the C/ebpalpha(beta/beta) mice provide new insights into the nonredundant functions of C/EBPalpha and C/EBPbeta on gene regulation in WAT.  (+info)

Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cis-dihydroxylation: control by phenylalanine 352 in the alpha subunit. (51/954)

The naphthalene dioxygenase (NDO) system catalyzes the first step in the degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The enzyme has a broad substrate range and catalyzes several types of reactions including cis-dihydroxylation, monooxygenation, and desaturation. Substitution of valine or leucine at Phe-352 near the active site iron in the alpha subunit of NDO altered the stereochemistry of naphthalene cis-dihydrodiol formed from naphthalene and also changed the region of oxidation of biphenyl and phenanthrene. In this study, we replaced Phe-352 with glycine, alanine, isoleucine, threonine, tryptophan, and tyrosine and determined the activity with naphthalene, biphenyl, and phenanthrene as substrates. NDO variants F352W and F352Y were marginally active with all substrates tested. F352G and F352A had reduced but significant activity, and F352I, F352T, F352V, and F352L had nearly wild-type activities with respect to naphthalene oxidation. All active enzymes had altered regioselectivity with biphenyl and phenanthrene. In addition, the F352V and F352T variants formed the opposite enantiomer of biphenyl cis-3,4-dihydrodiol [77 and 60% (-)-(3S,4R), respectively] to that formed by wild-type NDO [>98% (+)-(3R,4S)]. The F352V mutant enzyme also formed the opposite enantiomer of phenanthrene cis-1,2-dihydrodiol from phenanthrene to that formed by biphenyl dioxygenase from Sphingomonas yanoikuyae B8/36. A recombinant Escherichia coli strain expressing the F352V variant of NDO and the enantioselective toluene cis-dihydrodiol dehydrogenase from Pseudomonas putida F1 was used to produce enantiomerically pure (-)-biphenyl cis-(3S,4R)-dihydrodiol and (-)-phenanthrene cis-(1S,2R)-dihydrodiol from biphenyl and phenanthrene, respectively.  (+info)

Characterization of three XylT-like [2Fe-2S] ferredoxins associated with catabolism of cresols or naphthalene: evidence for their involvement in catechol dioxygenase reactivation. (52/954)

The xylT gene product, a component of the xylene catabolic pathway of Pseudomonas putida mt2, has been recently characterized as a novel [2Fe-2S] ferredoxin which specifically reactivates oxygen-inactivated catechol 2,3-dioxygenase (XylE). In this study, three XylT-like proteins potentially involved in the catabolism of naphthalene (NahT) or cresols (PhhQ and DmpQ) have been overexpressed in Escherichia coli, purified, and compared with respect to their biochemical properties and interaction with XylE. The three XylT analogues show general spectroscopic characteristics common to plant-type [2Fe-2S] ferredoxins as well as distinctive features that appear to be typical for the XylT subgroup of these proteins. The midpoint redox potentials of the PhhQ and DmpQ proteins were -286 mV and -323 mV, respectively. Interestingly, all purified XylT-like proteins promoted in vitro reactivation of XylE almost as efficiently as XylT. The interaction of XylE with XylT and its analogues was studied by cross-linking experiments using the 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. A polypeptide band with an M(r) of 46,000, which corresponded to the cross-linked product between one XylE subunit and one molecule of ferredoxin, was obtained in all cases. The formation of the complex was affected by ionic strength, indicating that electrostatic forces are involved in the dioxygenase-ferredoxin interaction. In complementation experiments, plasmids expressing xylT or its analogues were introduced into an XylT-null mutant of P. putida which is unable to grow on p-methylbenzoate. All transconjugants regained the wild-type phenotype, indicating that all analogues can substitute for XylT in the in vivo reactivation of XylE. Our results provide evidence for a subgroup of [2Fe-2S] ferredoxins with distinct biochemical properties whose specific function is to reactivate intrinsically labile extradiol ring cleavage dioxygenases involved in the catabolism of various aromatic hydrocarbons.  (+info)

Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47. (53/954)

Pseudomonas sp. S-47 expresses catechol 2,3-dioxygenase (C230) catalyzing the conversion of 4-chlorocatechol (4CC) as well as catechol to 5-chloro-2-hydroxymuconic semialdehyde and 2-hydroxymuconic semialdehyde, respectively, through meta-ring cleavage. The xylE gene encoding C230 for meta-cleavage was cloned from strain S-47 and its nucleotide sequence was analyzed. The pRES101 containing the xylE gene exhibited high C230 activity toward catechol and 4CC without altering the substrate specificity from natural strain. The xylE gene was composed of 924 bp and encoded polypeptide of molecular mass 35 kDa containing 307 amino acids. A deduced amino acid sequence of the C230 from strain S-47 exhibited over 80% identity with those of Pseudomonas putida mt-2, Pseudomonas putida G7, and Pseudomonas sp. CF600. However, it shows below 45% identity with those of Pseudomonas cepacia LB400 and Pseudomonas sp. KKS102. The C230 of strain S-47 was conserved in the amino acids (His150, His214, Glu261) for metal binding ligands and those (His199, His242, and Tyr251) for catalytic sites. Therefore, Pseudomonas sp. S-47 can be explained as acting by degrading catechol as well as 4CC by xylE-encoding C230 which was fused by N domain of nahH and C domain of dmpB from other Pseudomonas strains.  (+info)

Structural and functional analysis of mutations in alkaptonuria. (54/954)

Alkaptonuria (AKU), the prototypic inborn error of metabolism, was the first human disease to be interpreted as a Mendelian trait by Garrod and Bateson at the beginning of last century. AKU results from impaired function of homogentisate dioxygenase (HGO), an enzyme required for the catabolism of phenylalanine and tyrosine. With the novel 7 AKU and 22 fungal mutations reported here, a total of 84 mutations impairing this enzyme have been found in the HGO gene from humans and model organisms. Forty-three of these mutations result in single amino acid substitutions. This mutational information is analysed here in the context of the HGO structure and function using kinetic assays performed using purified AKU mutant enzymes and the crystal structure of human HGO. HGO is a topologically complex structure which assembles as a functional hexamer arranged as a dimer of trimers. We show how the intricate pattern of intra- and inter-subunit interactions and the extensive surfaces required for subunit folding and association of this oligomeric enzyme can be inactivated at multiple levels by single-residue substitutions. This explains, in part, the predominance of missense mutations (67%) in AKU.  (+info)

Control of abscisic acid synthesis. (55/954)

The abscisic acid (ABA) biosynthetic pathway involves the formation of a 9-cis-epoxycarotenoid precursor. Oxidative cleavage then results in the formation of xanthoxin, which is subsequently converted to ABA. A number of steps in the pathway may control ABA synthesis, but particular attention has been given to the enzyme involved in the oxidative cleavage reaction, i.e. 9-cis-epoxycarotenoid dioxygenase (NCED). Cloning of a gene encoding this enzyme in maize was first reported in 1997. Mapping and DNA sequencing studies indicated that a wilty tomato mutant was due to a deletion in the gene encoding an enzyme with a very similar amino acid sequence to this maize NCED. The potential use of this gene in altering ABA content will be discussed together with other genes encoding ABA biosynthetic enzymes.  (+info)

High frequency of alkaptonuria in Slovakia: evidence for the appearance of multiple mutations in HGO involving different mutational hot spots. (56/954)

Alkaptonuria (AKU) is an autosomal recessive disorder caused by the deficiency of homogentisate 1,2 dioxygenase (HGO) activity. AKU shows a very low prevalence (1:100,000-250,000) in most ethnic groups. One notable exception is in Slovakia, where the incidence of AKU rises to 1:19,000. This high incidence is difficult to explain by a classical founder effect, because as many as 10 different AKU mutations have been identified in this relatively small country. We have determined the allelic associations of 11 HGO intragenic polymorphisms for 44 AKU chromosomes from 20 Slovak pedigrees. These data were compared to the HGO haplotype data available in our laboratory for >80 AKU chromosomes from different European and non-European countries. The results show that common European AKU chromosomes have had only a marginal contribution to the Slovak AKU gene pool. Six of the ten Slovak AKU mutations, including the prevalent G152fs, G161R, G270R, and P370fs mutations, most likely originated in Slovakia. Data available for 17 Slovak AKU pedigrees indicate that most of the AKU chromosomes have their origins in a single very small region in the Carpathian mountains, in the northwestern part of the country. Since all six Slovak AKU mutations are associated with HGO mutational hot spots, we suggest that an increased mutation rate at the HGO gene is responsible for the clustering of AKU mutations in such a small geographical region.  (+info)