Differential blockade of rat alpha3beta4 and alpha7 neuronal nicotinic receptors by omega-conotoxin MVIIC, omega-conotoxin GVIA and diltiazem. (1/147)

Rat alpha3beta4 or alpha7 neuronal nicotinic acetylcholine receptors (AChRs) were expressed in Xenopus laevis oocytes, and the effects of various toxins and non-toxin Ca2+ channel blockers studied. Nicotinic AChR currents were elicited by 1 s pulses of dimethylphenylpiperazinium (DMPP, 100 microM) applied at regular intervals. The N/P/Q-type Ca2+ channel blocker omega-conotoxin MVIIC inhibited alpha3beta4 currents with an IC50 of 1.3 microM; the blockade was non-competitive and reversible. The alpha7 currents were unaffected. At 1 microM, omega-conotoxin GVIA (N-type Ca2+ channel blocker) inhibited by 24 and 20% alpha3beta4 and alpha7 currents, respectively. At 1 microM, omega-agatoxin IVA (a P/Q-type Ca2+ channel blocker) did not affect alpha7 currents and inhibited alpha3beta4 currents by only 15%. L-type Ca2+ channel blockers furnidipine, verapamil and, particularly, diltiazem exhibited a preferential blocking activity on alpha3beta4 nicotinic AChRs. The mechanism of alpha3beta4 currents blockade by omega-conotoxins and diltiazem differed in the following aspects: (i) the onset and reversal of the blockade was faster for toxins; (ii) the blockade by the peptides was voltage-dependent, while that exerted by diltiazem was not; (iii) diltiazem promoted the inactivation of the current while omega-toxins did not. These data show that, at concentrations currently employed as Ca2+ channel blockers, some of these compounds also inhibit certain subtypes of nicotinic AChR currents. Our data calls for caution when interpreting many of the results obtained in neurons and other cell types, where nicotinic receptor and Ca2+ channels coexist.  (+info)

Evidence that nitric oxide acts as an inhibitory neurotransmitter supplying taenia from the guinea-pig caecum. (2/147)

Nitric oxide synthase-containing nerve fibres are abundant within taenia of the guinea-pig caecum, but there is little previous evidence supporting a direct role for nitric oxide (NO) in responses to enteric inhibitory nerve stimulation. In this study we have attempted to identify an NO-dependent component of inhibitory transmission in isolated taenia coli. Isometric tension was recorded in the presence of atropine and guanethidine (both 1 microM). Tone was raised with histamine (1 microM), and intrinsic inhibitory neurons stimulated using either a nicotinic agonist (1,1-dimethyl-4-phenylpiperazinium iodide; DMPP) or electrical field stimulation (EFS). DMPP (1-100 microM) produced concentration-dependent biphasic relaxations, comprising an initial peak relaxation followed by a sustained relaxation. Responses to DMPP were antagonized by tetrodotoxin (1 microM) or apamin (0.3 microM) and abolished by hexamethonium (300 microM). L-nitro-arginine (L-NOARG; 100 microM) and oxyhaemoglobin (2%) both significantly reduced sustained relaxations produced by DMPP. EFS (5 Hz, 30 s) also produced biphasic relaxations. Both L-NOARG and an inhibitor of soluble guanylate cyclase (ODQ, 1-10 microM) reduced the sustained component of EFS responses. Two NO donors, sodium nitroprusside (SNP) and diethylenetriamine-nitric oxide adduct (DENO), produced concentration-dependent relaxations. Responses to SNP and DENO were antagonized by ODQ (1 microM) and by apamin (0.3 mM). These results suggest that NO contributes directly to a component of inhibitory transmission in guinea-pig taenia coli. The actions of NO appear to be mediated via cyclic GMP synthesis, and may involve activation of small conductance calcium activated K+ channels. A role for NO is most evident during sustained relaxations evoked by longer stimulus trains or chemical stimulation of intrinsic neurons.  (+info)

Rat chromaffin cells lack P2X receptors while those of the guinea-pig express a P2X receptor with novel pharmacology. (3/147)

1. Whole-cell patch-clamp recording was used to determine the functional expression and pharmacological properties of P2X receptors in chromaffin cells dissociated from adrenal medullae of rats and guinea-pigs. 2. In rat chromaffin cells maintained in culture for 1 - 7 days, ATP and UTP failed to evoke any detectable response. 3. Guinea-pig chromaffin cells responded to ATP (100 microM) with a rapidly activating inward current. The amplitude of the response to ATP increased over the period cells were maintained in culture and so did the number of cells giving a detectable response, with 69% of cells responding after >/=4 days of culture. 4. The response to ATP desensitized slowly, and had a reversal potential of 2.5 mV. The EC50 for ATP was 43 microM. The potency order for ATP analogues was 2-MeSATP>ATP>ADP. Adenosine, UTP and alpha,beta-meATP were inactive. 5. Suramin (100 microM) and Cibacron blue (50 microM) inhibited the ATP (100 microM)-activated current by 51 and 47%, respectively. PPADS antagonized the response to ATP (100 microM) with an IC50 of 3.2 microM. 6. The ATP concentration-response curve shifted to the left at pH 6.8 (EC50, 19 microM) and right at pH 8.0 (EC50, 96 microM), without changing the maximal response. Zn2+ inhibited the response to ATP (100 microM) with an IC50 of 48 microM. 7. This study indicates that expression of ATP-gated cation channels in chromaffin cells is species dependent. The P2X receptors in guinea-pig chromaffin cells show many characteristics of the P2X2 receptor subtype.  (+info)

Role of calcium channels in catecholamine secretion in the rat adrenal gland. (4/147)

1. We elucidated the contribution of voltage-dependent Ca2+ channels to cholinergic control of catecholamine secretion in the isolated perfused rat adrenal gland. 2. Nifedipine (0.3-3 microM) inhibited increases in noradrenaline output induced by transmural electrical stimulation (1-10 Hz) and acetylcholine (6-200 microM), whereas it only slightly inhibited the adrenaline output responses. Nifedipine also inhibited the catecholamine output response induced by 1, 1-dimethyl-4-phenyl-piperazinium (DMPP; 5-40 microM) but not by methacholine (10-300 microM). 3. omega-Conotoxin MVIIC (10-1000 nM) inhibited the catecholamine output responses induced by electrical stimulation but not by acetylcholine, DMPP and methacholine. 4. omega-Conotoxin GVIA (50-500 nM) had no inhibitory effect on the catecholamine output responses. 5. These results suggest that L-type Ca2+ channels are responsible for adrenal catecholamine secretion mediated by nicotinic receptors but not by muscarinic receptors, and that their contribution to noradrenaline secretion may be greater than that to adrenaline secretion. P/Q-type Ca2+ channels may control the secretion at a presynaptic site.  (+info)

Mitochondria regulate the Ca(2+)-exocytosis relationship of bovine adrenal chromaffin cells. (5/147)

The present study expands the contemporary view of mitochondria as important participants in cellular Ca(2+) dynamics and provides evidence that mitochondria regulate the supply of release-competent secretory granules. Using pharmacological probes to inhibit mitochondrial Ca(2+) import, the ability of mitochondria to modulate secretory activity in single, patch-clamped bovine chromaffin cells was examined by simultaneously monitoring rapid changes in membrane surface area (DeltaC(m)) and cytosolic Ca(2+) levels ([Ca(2+)](c)). Repetitive step depolarizations or action potential waveforms were found to raise the [Ca(2+)](c) of chromaffin cells into the 1 microM to tens of micromolar range. Inhibiting mitochondria by treatment with carbonyl cyanide p-(trifuoro-methoxy)phenylhydrazone, antimycin-oligomycin, or ruthenium red revealed that mitochondria are a prominent component for the clearance of Ca(2+) that entered via voltage-activated Ca(2+) channels. Disruption of cellular Ca(2+) homeostasis by poisoning mitochondria enhanced the secretory responsiveness of chromaffin cells by increasing the amplitude of the transient rise and the time course of recovery to baseline of the evoked Delta[Ca(2+)](c). The enhancement of the secretory response was represented by significant deviation of the Ca(2+)-exocytosis relationship from a standard relationship that equates Ca(2+) influx and DeltaC(m). Thus, mitochondria would play a critical role in the control of secretory activity in chromaffin cells that undergo tonic or repetitive depolarizing activity, likely by limiting the Ca(2+)-dependent activation of specific proteins that recruit or prime secretory granules for exocytosis.  (+info)

Cardiac transplantation does not effect ischaemia-induced arrhythmias in rats. (6/147)

OBJECTIVE: In many species arrhythmias induced by myocardial ischaemia appear to be in part dependent upon cardiac sympathetic nerves. However, previous experiments in rats did not suggest that myocardial or other catecholamines are involved in ischaemic arrhythmogenesis in this species. The aim of this study was to investigate this further using transplanted hearts. METHODS: We transplanted 'donated' hearts onto the abdominal aorta of recipient rats and, at varying periods after transplantation, subjected donated and recipient hearts to occlusion of the left anterior descending (LAD) coronary artery. Donated and recipient hearts were tested at various times after transplantation for responsiveness to drugs acting upon aspects of the autonomic nervous system. The intention of this latter study was to assess the status of innervation and receptors simultaneously in both donated and recipient hearts. RESULTS: Donated (transplanted) hearts showed responses consistent with denervation and receptor supersensitivity. Changes varied with the duration of the transplant. Over the same period recipient hearts did not change in responsiveness to drugs. When subjected to coronary artery occlusion, transplanted hearts responded to occlusion with the same frequency and severity of arrhythmias as recipient and other control hearts, regardless of the duration of transplant, or sensitivity to drugs. CONCLUSIONS: The results of these experiments suggest that cardiac innervation is not an important factor in the genesis of ischaemia-induced arrhythmias in rats.  (+info)

Purinergic and cholinergic neuro-neuronal transmission underlying reflexes activated by mucosal stimulation in the isolated guinea-pig ileum. (7/147)

1. We present evidence that adenosine triphosphate (ATP) plays a major role in excitatory neuro-neuronal transmission in ascending and descending reflex pathways to the longitudinal (LM) and circular muscle (CM). 2. A partitioned bath was used for the pharmacological isolation of a segment of guinea-pig ileum ( approximately 6 cm in length), allowing drugs to be selectively applied to an intermediate region between the region where mucosal stimulation was applied and that where mechanical recordings were made. 3. Brush stroking the mucosa (3 strokes) elicited a synchronous contraction of the LM and CM both above (ascending excitation) and below (descending excitation) the site of stimulation. All reflexes were abolished when tetrodotoxin (1 microM) was applied to the intermediate chamber. 4. Hexamethonium (300 microM) added to the intermediate chamber abolished the ascending contraction in 15 % of oral preparations (from 26 preparations, 18 animals) and the descending contraction in 13% of anal preparations studied (from 53 preparations, 48 animals). In the remaining 85% of oral preparations, hexamethonium usually attenuated the oral contraction of the LM and CM. However, in the remaining 87% of anal preparations, hexamethonium had no effect on the anal contraction of the LM and CM. 5. Oral and anal reflexes that were hexamethonium resistant were either abolished or attenuated by the further addition of the P2 purinergic receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 microM) or alpha,beta-methylene ATP (50-100 microM) to the intermediate chamber. 6. 1,1-Dimethyl-4-phenyl-piperazinium iodide (DMPP, 20 microM) or alpha,beta-methylene ATP (50-100 microM) stimulated both ascending and descending excitatory pathways, when applied to the intermediate chamber. 7. In conclusion, ascending and descending neuro-neuronal transmission in excitatory nervous pathways to the LM and CM is complex and clearly involves neurotransmitter(s) other than acetylcholine (ACh). We suggest mucosal stimulation releases ACh and ATP in both ascending and descending excitatory reflex pathways that synapse with excitatory motoneurons to the LM and CM.  (+info)

A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. (8/147)

Kinetically distinct steps can be distinguished in the secretory response from neuroendocrine cells with slow ATP-dependent priming steps preceding the triggering of exocytosis by Ca(2+). One of these priming steps involves the maintenance of phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) through lipid kinases and is responsible for at least 70% of the ATP-dependent secretion observed in digitonin-permeabilized chromaffin cells. PtdIns-4,5-P(2) is usually thought to reside on the plasma membrane. However, because phosphatidylinositol 4-kinase is an integral chromaffin granule membrane protein, PtdIns-4,5-P(2) important in exocytosis may reside on the chromaffin granule membrane. In the present study we have investigated the localization of PtdIns-4,5-P(2) that is involved in exocytosis by transiently expressing in chromaffin cells a pleckstrin homology (PH) domain that specifically binds PtdIns-4, 5-P(2) and is fused to green fluorescent protein (GFP). The PH-GFP protein predominantly associated with the plasma membrane in chromaffin cells without any detectable association with chromaffin granules. Rhodamine-neomycin, which also binds to PtdIns-4,5-P(2), showed a similar subcellular localization. The transiently expressed PH-GFP inhibited exocytosis as measured by both biochemical and electrophysiological techniques. The results indicate that the inhibition was at a step after Ca(2+) entry and suggest that plasma membrane PtdIns-4,5-P(2) is important for exocytosis. Expression of PH-GFP also reduced calcium currents, raising the possibility that PtdIns-4,5-P(2) in some manner alters calcium channel function in chromaffin cells.  (+info)