The mRNA for protease nexin-1 is expressed in human dermal papilla cells and its level is affected by androgen. (25/1300)

Protease nexin-1, an inhibitor of serine proteases, plays important parts in the regulation of the growth, differentiation, and death of cells by modulating proteolytic activity. The mRNA for protease nexin-1 accumulates in rat dermal papilla cells in a hair cycle-dependent fashion and its levels are well correlated with the ability of dermal papilla cells to support hair growth. In an attempt to characterize the potential role of protease nexin-1 as a modulator of hair growth in humans, we investigated the steady-state level of protease nexin-1 mRNA in cultured human dermal papilla cells using a semiquantitative technique that involved reverse transcription and polymerase chain reaction, as well as the localization of this mRNA in vivo using dissected hair follicles. Protease nexin-1 mRNA was expressed in all dermal papilla cells examined, and it was also identified in the lower part of the connective tissue sheath. Moreover, we found that levels of protease nexin-1 mRNA were depressed by dihydrotestosterone, the most potent androgen, in cultured dermal papilla cells obtained from balding scalp. Our results suggest that protease nexin-1 might be a key molecule in the control of hair growth in humans and, moreover, that the androgen-mediated downregulation of the synthesis of protease nexin-1 might be associated with the progression of male-pattern baldness.  (+info)

Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). (26/1300)

Prostate cancer is the most common malignancy in males and is the second most common cause of cancer mortality in American men. Polymorphisms have been identified in two genes, the 17-hydroxylase cytochrome P450 gene (CYP17) and the steroid 5-reductase type II gene (SRD5A2) that are involved with androgen biosynthesis and metabolism. The CYP17 A2 allele contains a T-->C transition in the 5' promoter region that creates an additional Sp1-type (CCACC box) promoter site. The SRD5A2 valine to leucine (V89L) polymorphism has been correlated with lower dihydroxytestosterone levels. We tested genotypes in 108 prostate cases and 167 controls along with samples (n = 340) from several different ethnic groups. The CYP17 A2 allele (combined A1/A2 and A2/A2 genotypes) occurred at a higher frequency in Caucasian patients with prostate cancer (70%) than in Caucasian clinical control urology patients (57%), suggesting that the A2 allele may convey increased risk for prostate cancer [odds ratio (OR) = 1.7, 95% confidence interval (CI) = 1.0-3.0]. Blacks and Caucasians had a similar frequency of the A2 genotype (16 and 17%, respectively) while Taiwanese had the highest frequency (27%). The SRD5A2 leucine genotype was most frequent in Taiwanese (28%), intermediate in Caucasians (8.5%) and lowest in Blacks (2.5%). Genotypes having a SRD5A2 leucine allele were somewhat more common in prostate cancer cases (56%) than in controls (49%) (OR = 1.4, 95% CI = 0.8-2.2) but this difference was not significant. These results support the hypothesis that some allelic variants of genes involved in androgen biosynthesis and metabolism may be associated with prostate cancer risk.  (+info)

Gonadotrophin and testosterone suppression by 7alpha-methyl-19-nortestosterone acetate administered by subdermal implant to healthy men. (27/1300)

The synthetic androgen 7alpha-methyl-19-nortestosterone (MENT) is a potent suppressor of gonadotrophin that has several advantages for long term administration to normal or hypoandrogenic men. The aim of this study was to examine MENT serum concentrations following subdermal insertion of MENT acetate (MENT Ac) implants and their effects on gonadotrophins, testosterone, dihydrotestosterone (DHT), sex hormone-binding globulin, prostate specific antigen and insulin-like growth factor-1 serum concentrations in normal men. A total of 45 healthy men were recruited at three clinics. Each subject received one, two or four implants for 28 days. Serum samples were obtained before insertion and on days 8, 15, 22, 29, 36 and 43 after implant insertion. The average daily dose delivered in vivo by one implant was approximately 500 microg. One, two or four MENT Ac implants produced dose dependent and sustained serum MENT concentrations for the entire duration of treatment of 0.7 +/- 0.1, 1.2 +/- 0.1 and 2.0 +/- 0.1 nmol/l respectively. This treatment induced a dose dependent decrease in gonadotrophin and androgen serum levels. Two and four implants induced maximal suppression that was maintained throughout treatment and was completely reversed after removal of the implants. The mean decreases were 93 +/- 1% for testosterone, 80 +/- 3% for DHT, 97 +/- 1% for luteinizing hormone and 95 +/- 1% for follicle stimulating hormone. No serious adverse reactions were reported by the volunteers and no consistent changes in clinical chemistry and haematology were found. These results indicate that MENT Ac implants are an efficient way of MENT administration and confirm the potent gonadotrophin and androgen suppressive effect of this drug.  (+info)

Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. (28/1300)

It has recently been shown that androgens increase the growth of immature follicles in the primate ovary. In the present study the effect of androgens on ovarian insulin-like growth factor I (IGF-I) and IGF-I receptor gene expression was investigated. The study groups included five follicular phase, placebo-treated controls, and four testosterone- and three dihydrotestosterone (DHT)-treated rhesus monkeys. The treatment period was 5 days. Both testosterone and DHT treatment resulted in significant, 3-4-fold increases in IGF-I mRNA concentration in granulosa, thecal and interstitial compartments. Likewise, both androgens induced significant increases in the amount of IGF-I receptor mRNA, most notably in thecal cells and less markedly in granulosa and interstitium (P < 0.05). These changes in amounts of IGF system mRNA were documented in growing follicles up to the small antral (+info)

Androgen and epidermal growth factor down-regulate cyclin-dependent kinase inhibitor p27Kip1 and costimulate proliferation of MDA PCa 2a and MDA PCa 2b prostate cancer cells. (29/1300)

Low levels of p27Kip1 in primary prostate cancer specimens have been shown to be associated with higher rates of disease recurrence and poor rates of disease-free survival in patients with localized disease. In this study, we provide the first direct evidence showing that dihydrotestosterone (DHT), a major proliferation regulator of prostate cancer, can down-regulate p27Kip1 and stimulate cyclin-dependent kinase-2 (CDK2) activity in established prostate cancer cell lines. We investigated the cooperative effects of DHT and epidermal growth factor (EGF) on the proliferation of androgen-responsive MDA PCa 2a and MDA PCa 2b prostate cancer cells. DHT and EGF each stimulated proliferation of these cells, but exposure of the cells to DHT and EGF together stimulated greater proliferation. Stimulation of cell proliferation by DHT and/or EGF was associated with increased CDK2 activity and a decreased level of p27Kip1. There seems to be a positive feedback stimulation loop between androgen-induced gene transcription and EGF-stimulated signal transduction, as one could stimulate the synthesis of the receptors for the other. Dual blockade of androgen receptor function with the antiandrogen hydroxyflutamide and EGF receptor superfamily-mediated signal transduction with the anti-EGF receptor monoclonal antibody C225 and the anti-HER2 receptor monoclonal antibody Herceptin significantly enhanced growth inhibition of the MDA PCa 2a cells. Our results demonstrate the importance of counteracting both androgen receptors and EGF receptors in the development of novel therapies for prostate cancer.  (+info)

Characterization of the progestin receptors in the human TE85 and murine MC3T3-E1 osteoblast-like cell lines. (30/1300)

Progestins are believed to exert positive effects on bone density through receptors located in osteoblasts. In the present studies, the binding characteristics and regulation of the progestin receptors in two osteoblast-like cell lines were compared with those in human breast lines. Human TE85 and murine MC3T3-E1 osteoblast-like cells contain a single, high-affinity progestin binding site whose affinity and concentration are lower than in human breast cells. The osteoblastic progestin binding sites showed the expected steroid specificity and associated with the cell nuclei when occupied by ligand. The progestin receptors in osteoblastic cells also had sedimentation coefficients similar to those receptors in breast cells. The regulation of the progestin receptor in the osteoblast-like cells was explored by treating them with estradiol. In contrast to the large, rapid change seen in the breast cells, the progestin receptor levels in the MC3T3-E1 cells showed only a small, delayed up-regulation with estradiol treatment. The progestin receptor number in the TE85 cells was unaffected by estradiol. Down-regulation of the progestin receptors was explored by treating the cells with the progestin, norethindrone (NET). NET administration produced a rapid drop in progestin binding sites in the breast cells and a smaller, more gradual decline in MC3T3-E1 progestin binding. While the maximal decrease in receptor number occurred within 24 h in the breast cells, the receptor number was still continuing to fall after 72 h in the MC3T3-E1 cells. The data presented here demonstrate that both human and murine osteoblast-like cells contain a functional progestin receptor whose binding characteristics and regulation are similar, but not identical, to those receptors in other progestin target tissues such as the breast.  (+info)

Suppression of Delta(5)-androstenediol-induced androgen receptor transactivation by selective steroids in human prostate cancer cells. (31/1300)

Our earlier report suggested that androst-5-ene-3beta,7beta-diol (Delta(5)-androstenediol or Adiol) is a natural hormone with androgenic activity and that two potent antiandrogens, hydroxyflutamide (Eulexin) and bicalutamide (Casodex), fail to block completely the Adiol-induced androgen receptor (AR) transactivation in prostate cancer cells. Here, we report the development of a reporter assay to screen several selective steroids with anti-Adiol activity. Among 22 derivatives/metabolites of dehydroepiandrosterone, we found 4 steroids [no. 4, 1,3,5(10)-estratriene-17alpha-ethynyl-3, 17beta-diol; no. 6, 17alpha-ethynyl-androstene-diol; no. 8, 3beta, 17beta-dihydroxy-androst-5-ene-16-one; and no. 10, 3beta-methylcarbonate-androst-5-ene-7,17-dione] that have no androgenic activity and could also block the Adiol-induced AR transactivation in prostate cancer PC-3 cells. Interestingly, these compounds, in combination with hydroxyflutamide, further suppressed the Adiol-induced AR transactivation. Reporter assays further showed that these four anti-Adiol steroids have relatively lower glucocorticoid, progesterone, and estrogenic activity. Together, these data suggest some selective steroids might have anti-Adiol activity, which may have potential clinical application in the battle against the androgen-dependent prostate cancer growth.  (+info)

Structure and activity of the murine type 5 17beta-hydroxysteroid dehydrogenase gene(1). (32/1300)

17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) play a crucial role in the control of active sex steroid intracellular levels. Seven types of 17beta-HSD have been described. In this study, we report the cloning and characterization of the mouse type 5 17beta-HSD belonging to the aldo-keto reductase superfamily, in contrast with types 1, 2, 3, 4, 6, and 7 17beta-HSD which belong to the short-chain alcohol dehydrogenase family. The gene spans 16 kb and contains 9 exons separated by 8 introns. Primer extension analysis identified a major transcription start site beginning 50 nucleotides upstream from the ATG initiation codon. Northern blot analysis showed a high mRNA expression level in the liver and a weaker signal in the kidney. To determine more precisely the substrate specificity of the enzyme, we established a stable cell line expressing mouse type 5 17beta-HSD in transformed human embryonic kidney (293) cells. The transfected cell line preferentially catalyzes the transformation of 4-androstenedione (4-dione) and androstanedione (A-dione) into testosterone (T) and dihydrotestosterone (DHT), respectively. This data is somewhat in contradiction with a previous study that described the enzyme as estradiol 17beta-dehydrogenase. Our results indicate that the rate of transformation of estradiol (E(2)) to estrone (E(1)) represents only 1% of the rate of transformation of 4-dione to T. Mouse type 5 17beta-HSD shares 76% amino acid sequence identity with human type 5 17beta-HSD; 71%, 76%, 76% with rat 3alpha-HSD and human types 1 and 3 3alpha-HSDs, respectively; and 71%, 69% and 77% with mouse, rat and human 20alpha-HSD, respectively.  (+info)