Changed levels of endogenous sex steroids in women on oral contraceptives. (1/1300)

Serum and urinary levels of unconjugated testosterone, dihydrotestosterone, and oestradiol were measured by specific radioimmunoassays in 10 healthy women in the early follicular phase of their menstrual cycle and in nine healthy women taking oral contraceptives. The contraceptive group had testosterone levels 1-3 times higher and dihydrotestosterone levels two times higher than those in the controls. Serum oestradiol levels in the contraceptive group were much lower than those in the controls and similar to levels in postmenopausal women. The contraceptive group had about twice the urinary excretion of unconjugated (free) testosterone and dihydrotestosterone of the controls, but their excretion of unconjugated oestradiol was 2-7 times lower. The great increase in serum and urinary androgen concentrations, as well as the suppression of oestradiol, may be related to the antiovulatory effect of oral contraceptives.  (+info)

The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture. (2/1300)

We have examined five human breast cancer cell lines in continuous tissue culture for androgen responsiveness. One of these cell lines shows a 2- to 4-fold stimulation of thymidine incorporation into DNA, apparent as early as 10 hr following androgen addition to cells incubated in serum-free medium. This stimulation is accompanied by an acceleration in cell replication. Antiandrogens [cyproterone acetate (6-chloro-17alpha-acetate-1,2alpha-methylene-4,6-pregnadiene-3,20-dione) and R2956 (17beta-hydroxy-2,2,17alpha-trimethoxyestra-4,9,11-triene-1-one)] inhibit both protein and DNA synthesis below control levels and block androgen-mediated stimulation. Prolonged incubation (greater than 72 hr) in antiandrogen is lethal. The MCF- cell line contains high-affinity receptors for androgenic steroids demonstrable by sucrose density gradients and competitive protein binding analysis. By cross-competition studies, androgen receptors are distinguishable from estrogen receptors also found in this cell line. Concentrations of steroid that saturate androgen receptor sites in vitro are about 1000 times lower than concentrations that maximally stimulate the cells. Changes in quantity and affinity of androgen binding to intact cells at 37 degrees as compared with usual binding techniques using cytosol preparation at 0 degrees do not explain this difference between dissociation of binding and effect. However, this difference can be explained by conversion of [3H]-5alpha-dihydrotestosterone to 5alpha-androstanediol and more polar metabolites at 37 degrees. An examination of incubation media, cytoplasmic extracts and crude nuclear pellets reveals probable conversion of [3H]testosterone to [3H]-5alpha-dihydrotestosterone. Our data provide compelling evidence that some human breast cancer, at least in vitro, may be androgen dependent.  (+info)

Androgen influence on lacrimal gland apoptosis, necrosis, and lymphocytic infiltration. (3/1300)

PURPOSE: Previous studies have shown that ovariectomy and hypophysectomy cause regression of the lacrimal gland and have implicated androgens as trophic hormones that support the gland. The purposes of this study were to test the hypothesis that glandular regression after ovariectomy is due to apoptosis, to identify the cell type or types that undergo apoptosis, to survey the time course of the apoptosis, and to determine whether ovariectomy-induced apoptosis could be prevented by dihydrotestosterone (DHT) treatment. METHODS: Groups of sexually mature female New Zealand White rabbits were ovariectomized and killed at various time periods up to 9 days. Additional groups of ovariectomized rabbits were treated with 4 mg/kg DHT per day. At each time period, sham-operated rabbits were used as controls. Lacrimal glands were removed and processed for analysis of apoptosis as assessed by DNA fragmentation and for morphologic examination. DNA fragmentation was determined using the TdT-dUTP terminal nick-end labeling assay and by agarose gel electrophoresis. Labeled nuclei were quantified by automated densitometry. Sections were also stained for RTLA (rabbit thymic lymphocyte antigen), rabbit CD18, and La antigen. Morphology was evaluated by both light and electron microscopy. RESULTS: The time course of apoptosis exhibited two phases, a rapid and transient phase and a second prolonged phase. A transient phase peaked at approximately 4 to 6 hours after ovariectomy. The values for degraded DNA as a percentage of total nuclear area were 4.29%+/-0.79% and 4.26%+/-0.54%, respectively. The values for sham-operated controls examined at the same time periods were 1.77%+/-0.08% and 0.82%+/-0.21%, respectively. The percentage of degraded DNA at 24 hours after ovariectomy was not different from controls examined at the same interval after sham operation. The percentage of degraded DNA 6 days after ovariectomy was significantly increased (8.5%+/-2.4%), compared with sham-operated animals at the same time period (0.68%+/-0.03%). DNA laddering was more pronounced after ovariectomy. Dihydrotestosterone treatment in ovariectomized rabbits suppressed the increase in DNA degradation. Morphologic examination of lacrimal gland sections indicated that ovariectomy caused apoptosis of interstitial cells rather than acinar or ductal epithelial cells. Tissue taken 4 hours and 6 days after ovariectomy showed nuclear chromatin condensation principally in plasma cells. Increased numbers of macrophages were also evident. Significant levels of cell degeneration and cell debris, characteristic of necrosis, were observed in acinar regions 6 days after ovariectomy. Dihydrotestosterone prevented this necrosis. Increased numbers of RTLA+, CD18+, and La+ interstitial cells were also evident 6 days after ovariectomy. In addition, ovariectomy increased La expression in ductal cells. Dihydrotestosterone treatment prevented the increase in numbers of lymphoid cells and La expression. Dihydrotestosterone also promoted the appearance of mitotic figures in acinar cells and increased the sizes of acini by 43% (P < 0.05). CONCLUSIONS: Glandular atrophy observed after ovariectomy is likely to proceed by necrosis of acinar cells rather than apoptosis. This process begins with an apparent time lag after a rapid phase of interstitial cell apoptosis. These processes are accompanied by increased lymphocytic infiltration. These results suggest that a critical level of androgen is necessary to maintain lacrimal gland structure and function and that a decrease in available androgen below this level could trigger lacrimal gland apoptosis and necrosis, and an autoimmune response. Because apoptotic and necrotic cell fragments may be sources of autoantigens that can be processed and presented to initiate an autoimmune reaction, we surmise that cell death triggered by androgen withdrawal may trigger an autoimmune response such as that encountered in Sjogren's syndrome. (ABSTRACT TRUNCATED)  (+info)

Nuclear matrix targeting of the protein kinase CK2 signal as a common downstream response to androgen or growth factor stimulation of prostate cancer cells. (4/1300)

Protein kinase CK2, a messenger-independent serine/threonine kinase, has been implicated in cell growth. Androgenic stimulus in rat prostate modulates its association with nuclear matrix (NM) and chromatin. Because the growth of human prostate carcinoma cells is influenced by androgens and/or growth factors, we determined the nature of CK2 signaling in the NM in response to androgen and growth factor stimuli. Androgen-sensitive LNCaP and androgen-insensitive PC-3 cells were cultured in media to regulate their growth in the presence of 5alpha-dihydrotestosterone (5alpha-DHT) or growth factors (epidermal growth factor, keratinocyte growth factor, and transforming growth factor alpha). The activity of CK2 was measured in the cytosolic and NM fractions isolated from these cells after treatment with growth stimuli. The changes in CK2 in various fractions were also confirmed by immunoblotting with a specific antibody. LNCaP cells responded to both 5alpha-DHT and growth factors for growth. The presence of these agents in the culture medium evoked a translocation of CK2 to the NM from the cytosol. The PC-3 cells did not respond to 5alpha-DHT for growth but did respond to growth factors. Under these conditions, there was also a translocation of CK2 to the NM concomitant with a decrease in the cytosolic fraction. These results suggest that CK2 translocation to the NM occurs in response to various growth stimuli in cells in culture. Thus, CK2 is a common downstream signal transducer in response to diverse growth stimuli that may relate to the pathobiology of prostate cancer cells.  (+info)

Dihydrotestosterone, stanozolol, androstenedione and dehydroepiandrosterone sulphate inhibit leptin secretion in female but not in male samples of omental adipose tissue in vitro: lack of effect of testosterone. (5/1300)

Leptin, the product of the Ob gene, is a polypeptide hormone expressed in adipocytes which acts as a signalling factor from the adipose tissue to the central nervous system, regulating food intake and energy expenditure. It has been reported that circulating leptin levels are higher in women than in men, even after correction for body fat. This gender-based difference may be conditioned by differences in the levels of androgenic hormones. To explore this possibility, a systematic in vitro study with organ cultures from human omental adipose tissue, either stimulated or not with androgens (1 microM), was undertaken in samples obtained from surgery on 44 non-obese donors (21 women and 23 men). The assay was standardized in periods of 24 h, ending at 96 h, with no apparent tissue damage. Leptin results are expressed as the mean+/-s.e.m. of the integrated secretion into the medium, expressed as ng leptin/g tissue per 48 h. Spontaneous leptin secretion in samples from female donors (4149+/-301) was significantly higher (P<0.01) than that from male donors (2456+/-428). Testosterone did not exert any significant effect on in vitro leptin secretion in either gender (4856+/-366 in women, 3322+/-505 in men). Coincubation of adipose tissue with dihydrotestosterone (DHT) induced a significant (P<0.05) leptin decrease in samples taken from women (3119+/-322) but not in those taken from men (2042+/-430). Stanozolol, a non-aromatizable androgen, decreased (P<0.05) leptin secretion in female samples (2809+/-383) but not in male (1553+/-671). Dehydroepiandrosterone sulphate (DHEA-S) induced a significant (P<0.01) leptin decrease in female samples (2996+/-473), with no modifications in samples derived from males (1596+/-528). Exposure to androstenedione also resulted in a significant reduction (P<0.01) of leptin secretion in samples taken from women (2231+/-264), with no effect on male adipose tissue (1605+/-544). In conclusion, DHT, stanozolol, DHEA-S and androstenedione induced a significant inhibition of in vitro leptin secretion in samples from female donors, without affecting the secretion in samples from men. Testosterone was devoid of activity in either gender.  (+info)

Developing hypothalamic dopaminergic neurones as potential targets for environmental estrogens. (6/1300)

Environmental chemicals which mimic the actions of estrogen have the potential to affect any estrogen responsive tissue. The aim of the present study was to investigate their potential to mimic the effects of 17beta-estradiol (E2) on developing primary rat hypothalamic dopaminergic (DA) neurones maintained in a chemically defined medium. We now show that both E2 and octylphenol (OP), but not the non-aromatizable androgen, dihydrotestosterone, enhanced the uptake of [3H]DA by the cultured cells, whereas they had no effect on the uptake of [14C]GABA. Although the sensitivity of responses may change with the age of the developing cultures, the dose response curves for E2 and OP were typically 'bell-shaped', with a rise in response followed by a decline to control levels with increasing concentrations. Effects were seen as low as 10(-14) M for E2 and 10(-11) M for OP. Responses to E2 (10(-12) M) and OP (10(-9) M) were reversed in the presence of the antiestrogen, ZM 182780 (10(-5) M). This study thus provides direct evidence, using a mechanistic rather than toxicological end-point, in support of the hypothesis that inappropriate exposure to environmental estrogens at critically sensitive stages of development, could potentially perturb the organisational activities of estrogen on selected neuronal populations in the CNS.  (+info)

Opposing changes in 3alpha-hydroxysteroid dehydrogenase oxidative and reductive activities in rat leydig cells during pubertal development. (7/1300)

The enzyme 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) has an important role in androgen metabolism, catalyzing the interconversion of dihydrotestosterone (DHT) and 5alpha-androstane-3alpha,17beta-diol (3alpha-DIOL). The net direction of this interconversion will affect the amount of biologically active ligand available for androgen receptor binding. We hypothesize that in Leydig cells, differential expression of 3alpha-HSD enzymes favoring one of the two directions is a mechanism by which DHT levels are controlled. In order to characterize 3alpha-HSD in rat Leydig cells, the following properties were analyzed: rates of oxidation (3alpha-DIOL to DHT) and reduction (DHT to 3alpha-DIOL) and preference for the cofactors NADP(H) and NAD(H) (i.e., the oxidized and reduced forms of both pyridine nucleotides) in Leydig cells isolated on Days 21, 35, and 90 postpartum. Levels of 3alpha-HSD protein were measured by immunoblotting using an antibody directed against the liver type of the enzyme. Levels of 3alpha-HSD protein and rates of reduction were highest on Day 21 and lowest on Day 90. The opposite was true for the rate of 3alpha-HSD oxidation, which was barely detectable on Day 21 and highest on Day 90 (59.08 +/- 6.35 pmol/min per 10(6) cells, mean +/- SE). Therefore, the level of 3alpha-HSD protein detectable by liver enzyme was consistent with reduction but not with oxidation. There was a clear partitioning of NADP(H)-dependent activity into the cytosolic fraction of Leydig cells, whereas on Days 35 and 90, Leydig cells also contained a microsomal NAD(H)-activated 3alpha-HSD. We conclude that 1) the cytosolic 3alpha-HSD in Leydig cells on Day 21 behaves as a unidirectional NADPH-dependent reductase; 2) by Day 35, a microsomal NAD(H)-dependent enzyme activity is present and may account for predominance of 3alpha-HSD oxidation over reduction and the resultant high capacity of Leydig cells on Day 90 to synthesize DHT from 3alpha-DIOL.  (+info)

Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. (8/1300)

Androgen receptor (AR) is a member of the steroid receptor superfamily that may require coactivators for proper or maximal transactivation. Using a yeast two-hybrid screening followed by mammalian cell analyses, we identified a novel ligand-dependent AR-associated protein, ARA54, which consists of 474 amino acids with a molecular mass of 54 kDa. We demonstrated that ARA54 might function as a preferential coactivator for AR-mediated transactivation in human prostate cancer DU145 cells. Interestingly, our data also showed that ARA54 could significantly enhance the transcriptional activity of LNCaP mutant AR (ARt877a) but not wild type AR or another mutant AR (ARe708k) in the presence of 10 nM 17beta-estradiol or 1 microM hydroxyflutamide. These results imply that both ARA54 and the positions of the AR mutation (877 versus 708) might contribute to the specificity of AR-mediated transactivation. Our findings further demonstrated that the C-terminal domain of ARA54 can serve as a dominant negative inhibitor and exogenous full-length ARA54 can reverse this squelching effect on AR transcriptional activity. Co-expression of ARA54 with other AR coactivators, such as ARA70 or SRC-1, showed additive stimulation of AR-mediated transactivation, which indicates that these cofactors may function individually as AR coactivators to induce AR target gene expression. Through our findings, we have identified and characterized a novel AR coactivator, ARA54, which may play an important role in the AR signaling pathway in human prostate.  (+info)