Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation. (1/406)

The Helicobacter pylori VacA toxin plays a major role in the gastric pathologies associated with this bacterium. When added to cultured cells, VacA induces vacuolation, an effect potentiated by preexposure of the toxin to low pH. Its mechanism of action is unknown. We report here that VacA forms anion-selective, voltage-dependent pores in artificial membranes. Channel formation was greatly potentiated by acidic conditions or by pretreatment of VacA at low pH. No requirement for particular lipid(s) was identified. Selectivity studies showed that anion selectivity was maintained over the pH range 4.8-12, with the following permeability sequence: Cl- approximately HCO3- > pyruvate > gluconate > K+ approximately Li+ approximately Ba2+ > NH4+. Membrane permeabilization was due to the incorporation of channels with a voltage-dependent conductance in the 10-30 pS range (2 M KCl), displaying a voltage-independent high open probability. Deletion of the NH2 terminus domain (p37) or chemical modification of VacA by diethylpyrocarbonate inhibited both channel activity and vacuolation of HeLa cells without affecting toxin internalization by the cells. Collectively, these observations strongly suggest that VacA channel formation is needed to induce cellular vacuolation, possibly by inducing an osmotic imbalance of intracellular acidic compartments.  (+info)

Ubiquinol:cytochrome c oxidoreductase. Effects of inhibitors on reverse electron transfer from the iron-sulfur protein to cytochrome b. (2/406)

The effects of inhibitors on the reduction of the bis-heme cytochrome b of ubiquinol: cytochrome c oxidoreductase (complex III, bc1 complex) has been studied in bovine heart submitochondrial particles (SMP) when cytochrome b was reduced by NADH and succinate via the ubiquinone (Q) pool or by ascorbate plus N,N,N', N'-tetramethyl-p-phenylenediamine via cytochrome c1 and the iron-sulfur protein of complex III (ISP). The inhibitors used were antimycin (an N-side inhibitor), beta-methoxyacrylate derivatives, stigmatellin (P-side inhibitors), and ethoxyformic anhydride, which modifies essential histidyl residues in ISP. In agreement with our previous findings, the following results were obtained: (i) When ISP/cytochrome c1 were prereduced or SMP were treated with a P-side inhibitor, the high potential heme bH was fully and rapidly reduced by NADH or succinate, whereas the low potential heme bL was only partially reduced. (ii) Reverse electron transfer from ISP/c1 to cytochrome b was inhibited more by antimycin than by the P-side inhibitors. This reverse electron transfer was unaffected when, instead of normal SMP, Q-extracted SMP containing 200-fold less Q (0. 06 mol Q/mol cytochrome b or c1) were used. (iii) The cytochrome b reduced by reverse electron transfer through the leak of a P-side inhibitor was rapidly oxidized upon subsequent addition of antimycin. This antimycin-induced reoxidation did not happen when Q-extracted SMP were used. The implications of these results on the path of electrons in complex III, on oxidant-induced extra cytochrome b reduction, and on the inhibition of forward electron transfer to cytochrome b by a P-side plus an N-side inhibitor have been discussed.  (+info)

Enzymatical properties of psychrophilic phosphatase I. (3/406)

Phosphatase I purified from a psychrophile (Shewanella sp.) [Tsuruta et al. (1998) J. Biochem. 123, 219-225] dephosphorylated O-phospho-L-tyrosine and phospho-tyrosyl residues in phosphorylated poly(Glu4,Tyr1) random polymer (polyEY) and phosphorylated myelin basic protein (MBP) but not phosphoseryl and/or phosphothreonyl residues in phosphorylated histone H1, casein and phosphorylase a, indicating that the enzyme showed protein-tyrosine-phosphatase (PTPase, EC activity in vitro. The enzyme was remarkably inhibited by diethylpyrocarbonate (DEPC), monoiodoacetic acid (MIAA), and monoiodoacetamide (MIAM). Binding of 1 mol of DEPC to 1 mol of the enzyme caused complete inhibition of the enzyme; and 0.88 mol of 1-carboxymethylated histidine per mole of the enzyme was found when 90% of enzyme activity was lost by modification with 14C-MIAA. These results indicated that this psychrophilic enzyme was a PTPase-like enzyme with histidine as its catalytic residue.  (+info)

Identification of three cysteines as targets for the Zn2+ blockade of the human skeletal muscle chloride channel. (4/406)

Currents through the human skeletal muscle chloride channel hClC-1 can be blocked by external application of 1 mM Zn2+ or the histidine-reactive compound diethyl pyrocarbonate (DEPC). The current block by Zn2+ strongly depends on the external pH (pKa near 6.9), whereas the block by DEPC is rather independent of the pH in the range of 5.5 to 8.5. To identify the target sites of these reagents, we constructed a total of twelve cysteine- and/or histidine-replacement mutants, transfected tsA201 cells with them, and investigated the resulting whole-cell chloride currents. The majority of the mutants exhibited a similar sensitivity toward Zn2+ or DEPC as wild type (WT) channels. Block by 1 mM Zn2+ was nearly absent only with the mutant C546A. Four mutants (C242A, C254A, H180A, and H451A) were slightly less sensitive to Zn2+ than WT. Tests with double, triple, and quadruple mutants yielded that, in addition to C546, C242 and C254 are also most likely participating in Zn2+-binding.  (+info)

Chemical modification of NADP-isocitrate dehydrogenase from Cephalosporium acremonium evidence of essential histidine and lysine groups at the active site. (5/406)

NADP-isocitrate dehydrogenase from Cephalosporium acremonium CW-19 has been inactivated by diethyl pyrocarbonate following a first-order process giving a second-order rate constant of 3.0 m-1. s-1 at pH 6.5 and 25 degrees C. The pH-inactivation rate data indicated the participation of a group with a pK value of 6.9. Quantifying the increase in absorbance at 240 nm showed that six histidine residues per subunit were modified during total inactivation, only one of which was essential for catalysis, and substrate protection analysis would seem to indicate its location at the substrate binding site. The enzyme was not inactivated by 5, 5'-dithiobis(2-nitrobenzoate), N-ethylmaleimide or iodoacetate, which would point to the absence of an essential reactive cysteine residue at the active site. Pyridoxal 5'-phosphate reversibly inactivated the enzyme at pH 7.7 and 5 degrees C, with enzyme activity declining to an equilibrium value within 15 min. The remaining activity depended on the modifier concentration up to about 2 mm. The kinetic analysis of inactivation and reactivation rate data is consistent with a reversible two-step inactivation mechanism with formation of a noncovalent enzyme-pyridoxal 5'-phosphate complex prior to Schiff base formation with a probable lysyl residue of the enzyme. The analysis of substrate protection shows the essential residue(s) to be at the active site of the enzyme and probably to be involved in catalysis.  (+info)

Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. (6/406)

The apical H+-coupled peptide transporter (PEPT1) and basolateral peptide transporter in human intestinal Caco-2 cells were functionally compared by the characterization of [14C]glycylsarcosine transport. The glycylsarcosine uptake via the basolateral peptide transporter was less sensitive to medium pH than uptake via PEPT1 and was not transported against the concentration gradient. Kinetic analysis indicated that glycylsarcosine uptake across the basolateral membranes was apparently mediated by a single peptide transporter. Small peptides and beta-lactam antibiotics inhibited glycylsarcosine uptake by the basolateral peptide transporter, and these inhibitions were revealed to be competitive. Comparison of the inhibition constant values of various beta-lactam antibiotics between PEPT1 and the basolateral peptide transporter suggested that the former had a higher affinity than the latter. A histidine residue modifier, diethyl pyrocarbonate, inhibited glycylsarcosine uptake by both transporters, although the inhibitory effect was greater on PEPT1. These findings suggest that a single facilitative peptide transporter is expressed at the basolateral membranes of Caco-2 cells and that PEPT1 and the basolateral peptide transporter cooperate in the efficient transepithelial transport of small peptides and peptidelike drugs.  (+info)

Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. (7/406)

Zinc (Zn2+) inhibition of N-methyl-D-aspartate receptor (NMDAR) activity involves both voltage-independent and voltage-dependent components. Recombinant NR1/NR2A and NR1/NR2B receptors exhibit similar voltage-dependent block, but voltage-independent Zn2+ inhibition occurs with much higher affinity for NR1/NR2A than NR1/NR2B receptors (nanomolar versus micromolar IC50, respectively). Here, we show that two neighboring histidine residues on NR2A represent the critical determinant (termed the "short spacer") for high-affinity, voltage-independent Zn2+ inhibition using the Xenopus oocyte expression system and site-directed mutagenesis. Mutation of either one of these two histidine residues (H42 and H44) in the extracellular N-terminal domain of NR2A shifted the IC50 for high-affinity Zn2+ inhibition approximately 200-fold without affecting the EC50 of the coagonists NMDA and glycine. We suggest that the mechanism of high-affinity Zn2+ inhibition on the NMDAR involves enhancement of proton inhibition.  (+info)

Magnesium-dependent alternative foldings of active and inactive Escherichia coli tRNA(Glu) revealed by chemical probing. (8/406)

A stable conformer of Escherichia coli tRNA(Glu), obtained in the absence of Mg(2+), is inactive in the aminoacylation reaction. Probing it with diethylpyrocarbonate, dimethyl sulfate and ribonuclease V1 revealed that it has a hairpin structure with two internal loops; the helical segments at both extremities have the same structure as the acceptor stem and the anticodon arm of the native conformer of tRNA(Glu)and the middle helix is formed of nucleotides from the D-loop (G15-C20:2) and parts of the T-loop and stem (G51-C56), with G19 bulging out. This model is consistent with other known properties of this inactive conformer, including its capacity to dimerize. Therefore, this tRNA requires magnesium to acquire a conformation that can be aminoacylated, as others require a post-transcriptional modification to reach this active conformation.  (+info)