(1/858) Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages.

Foam cells formed from receptor-mediated uptake of lipoprotein cholesterol by macrophages in the arterial intima are critical in the initiation, progression, and stability of atherosclerotic lesions. Macrophages accumulate cholesterol when conditions favor esterification by acyl-CoA:cholesterol acyltransferase (ACAT) over cholesteryl-ester hydrolysis by a neutral cholesteryl-ester hydrolase, such as hormone-sensitive lipase (HSL), and subsequent cholesterol efflux mediated by extracellular acceptors. We recently made stable transfectants of a murine macrophage cell line, RAW 264.7, that overexpressed a rat HSL cDNA and had a 5-fold higher rate of cholesteryl-ester hydrolysis than control cells. The current study examined the effect of macrophage-specific HSL overexpression on susceptibility to diet-induced atherosclerosis in mice. A transgenic line overexpressing the rat HSL cDNA regulated with a macrophage-specific scavenger receptor promoter-enhancer was established by breeding with C57BL/6J mice. Transgenic peritoneal macrophages exhibited macrophage-specific 7-fold overexpression of HSL cholesterol esterase activity. Total plasma cholesterol levels in transgenic mice fed a chow diet were modestly elevated 16% compared to control littermates. After 14 weeks on a high-fat, high-cholesterol diet, total cholesterol increased 3-fold, with no difference between transgenics and controls. However, HSL overexpression resulted in thicker aortic fatty lesions that were 2.5-times larger in transgenic mice. HSL expression in the aortic lesions was shown by immunocytochemistry. Atherosclerosis was more advanced in transgenic mice exhibiting raised lesions involving the aortic wall, along with lipid accumulation in coronary arteries occurring only in transgenics. Thus, increasing cholesteryl-ester hydrolysis, without concomitantly decreasing ACAT activity or increasing cholesterol efflux, is not sufficient to protect against atherosclerosis. hormone-sensitive lipase overexpression in macrophages.  (+info)

(2/858) Development of atherosclerotic lesions in cholesterol-loaded rabbits.

To examine both of the target vessels and the optimal time of their endothelial denudation to study vascular restenosis after balloon injury in cholesterol-loaded rabbits, we made 36 atherosclerotic rabbits by feeding a hypercholesterol diet, and histologically examined the onset time and the development of atherosclerosis. Atheromatous changes were observed first after the 5th week in the thoracic aorta from the start of the diet, and then extended to the abdominal aorta, coronary artery with time. The atherosclerotic lesions in the thoracic aorta and the proximal portion of the coronary artery showed high-grade concentric intimal thickening with luminal stenosis. The abdominal aortic lesion mildly progressed. In the renal, carotid and femoral arteries, in contrast, slight atheroscleromatous changes developed during the diet period. These results suggest that the thoracic and abdominal aortas and the coronary artery would be suitable as target vessels to study vascular restenosis after balloon injury, and the endothelial denudation of these vessels should be performed between the 8th and 15th week in this diet protocol for an accurate analysis.  (+info)

(3/858) Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65.

Recent data suggest that the immune system is involved in atherogenesis. Thus, interest has been raised as to the possible antigens that could serve as the initiators of the immune reaction. In the current work, we studied the effects of immunization with recombinant heat shock protein-65 (HSP-65) and HSP-65-rich Mycobacterium tuberculosis (MT) on early atherogenesis in C57BL/6J mice fed either a normal chow diet or a high-cholesterol diet (HCD). A rapid, cellular immune response to HSP-65 was evident in mice immunized with HSP-65 or with MT but not in the animals immunized with phosphate-buffered saline (PBS) alone. Early atherosclerosis was significantly enhanced in HCD-fed mice immunized with HSP-65 (n=10; mean aortic lesion size, 45 417+/-9258 microm2) or MT (n=15; 66 350+/-6850 microm2) compared with PBS-injected (n=10; 10 028+/-3599 microm2) or nonimmunized (n=10; 9500+/-2120 microm2) mice. No fatty streak lesions were observed in mice fed a chow diet regardless of the immunization protocol applied. Immunohistochemical analysis of atherosclerotic lesions from the HSP-65- and MT-immunized mice revealed infiltration of CD4 lymphocytes compared with the relatively lymphocyte-poor lesions in the PBS-treated or nonimmunized mice. Direct immunofluorescence analysis of lesions from HSP-65- and MT-immunized mice fed an HCD exhibited extensive deposits of immunoglobulins compared with the fatty streaks in the other study groups, consistent with the larger and more advanced lesions found in the former 2 groups. This model, which supports the involvement of HSP-65 in atherogenesis, furnishes a valuable tool to study the role of the immune system in atherogenesis.  (+info)

(4/858) ApoA1 reduces free cholesterol accumulation in atherosclerotic lesions of ApoE-deficient mice transplanted with ApoE-expressing macrophages.

Along with apolipoprotein (apo) E, which promotes cholesterol efflux from foam cells, apoA1-containing high density lipoprotein (HDL) is thought to facilitate the transport of cholesterol from lesions. This role for apoA1 was tested in vivo by lethally irradiating apoE-deficient and apoE- plus apoA1-deficient mice and reconstituting them with bone marrow cells isolated from wild-type (WT) mice. ApoE, but not apoA1, was synthesized by the transplanted bone marrow-derived cells. Therefore, this transplantation procedure generated apoE-deficient animals with atherosclerotic lesions that contained both apoE and apoA1 (E/A1 mice) and apoE-deficient animals with lesions that contained apoE but no apoA1 (E/A1o mice). As shown previously, the transplanted WT macrophage-derived apoE dramatically lowered the plasma hypercholesterolemia in both groups. On feeding with an atherogenic diet after transplantation, plasma cholesterol levels were raised in both groups of mice, but the levels in the E/A1 mice at 20 weeks were 2- to 3-fold higher than in E/A1o mice. Immunohistochemical staining verified that apoE was abundant in lesions of both groups, whereas apoA1 was detected in the lesions of E/A1 mice only. Despite a 2- to 3-fold lower total plasma cholesterol in the E/A1o mice, the free cholesterol recovered from isolated aortas was approximately 60% higher and the mean lesion area in serial sections of the aortic valves 45% larger. Therefore, apoA1 reduces free cholesterol accumulation in vivo in atherosclerotic lesions.  (+info)

(5/858) Effects of alcohol and cholesterol feeding on lipoprotein metabolism and cholesterol absorption in rabbits.

Alcohol fed to rabbits in a liquid formula at 30% of calories increased plasma cholesterol by 36% in the absence of dietary cholesterol and by 40% in the presence of a 0.5% cholesterol diet. The increase was caused almost entirely by VLDL, IDL, and LDL. Cholesterol feeding decreased the fractional catabolic rate for VLDL and LDL apoprotein by 80% and 57%, respectively, and increased the production rate of VLDL and LDL apoprotein by 75% and 15%, respectively. Alcohol feeding had no effect on VLDL apoprotein production but increased LDL production rate by 55%. The efficiency of intestinal cholesterol absorption was increased by alcohol. In the presence of dietary cholesterol, percent cholesterol absorption rose from 34.4+/-2.6% to 44.9+/-2.5% and in the absence of dietary cholesterol, from 84.3+/-1.4% to 88.9+/-1.0%. Increased cholesterol absorption and increased LDL production rate may be important mechanisms for exacerbation by alcohol of hypercholesterolemia in the cholesterol-fed rabbit model.  (+info)

(6/858) Overexpression of human hepatic lipase and ApoE in transgenic rabbits attenuates response to dietary cholesterol and alters lipoprotein subclass distributions.

The effect of the expression of human hepatic lipase (HL) or human apoE on plasma lipoproteins in transgenic rabbits in response to dietary cholesterol was compared with the response of nontransgenic control rabbits. Supplementation of a chow diet with 0.3% cholesterol and 3.0% soybean oil for 10 weeks resulted in markedly increased levels of plasma cholesterol and VLDL and IDL in control rabbits as expected. Expression of either HL or apoE reduced plasma cholesterol response by 75% and 60%, respectively. The HL transgenic rabbits had substantial reductions in medium and small VLDL and IDL fractions but not in larger VLDL. LDL levels were also reduced, with a shift from larger, more buoyant to smaller, denser particles. In contrast, apoE transgenic rabbits had a marked reduction in the levels of large VLDLs, with a selective accumulation of IDLs and large buoyant LDLs. Combined expression of apoE and HL led to dramatic reductions of total cholesterol (85% versus controls) and of total VLDL+IDL+LDL (87% versus controls). HDL subclasses were remodeled by the expression of either transgene and accompanied by a decrease in HDL cholesterol compared with controls. HL expression reduced all subclasses except for HDL2b and HDL2a, and expression of apoE reduced large HDL1 and HDL2b. Extreme HDL reductions (92% versus controls) were observed in the combined HL+apoE transgenic rabbits. These results demonstrate that human HL and apoE have complementary and synergistic functions in plasma cholesterol and lipoprotein metabolism.  (+info)

(7/858) Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed.

BACKGROUND: Secoisolariciresinol diglucoside (SDG) is a plant lignan isolated from flaxseed. Lignans are platelet-activating factor-receptor antagonists that would inhibit the production of oxygen radicals by polymorphonuclear leukocytes. SDG is an antioxidant. Antioxidants studied thus far are known to reduce hypercholesterolemic atherosclerosis. The objective of this study was to determine the effect of SDG on various blood lipid and aortic tissue oxidative stress parameters and on the development of atherosclerosis in rabbits fed a high-cholesterol diet. METHODS AND RESULTS: Rabbits were assigned to 4 groups: group 1, control; group 2, SDG control (15 mg. kg body wt-1. d-1 PO); group 3, 1% cholesterol diet; and group 4, same as group 3 but with added SDG (15 mg. kg body wt-1. d-1 PO). Blood samples were collected before (time 0) and after 4 and 8 weeks of experimental diets for measurement of serum triglycerides, total cholesterol (TC), and LDL, HDL, and VLDL cholesterol (LDL-C, HDL-C, and VLDL-C). The aorta was removed at the end of the protocol for assessment of atherosclerotic plaques; malondialdehyde, an aortic tissue lipid peroxidation product; and aortic tissue chemiluminescence, a marker for antioxidant reserve. Serum TC, LDL-C, and the ratios LDL-C/HDL-C and TC/HDL-C increased in groups 3 and 4 compared with time 0, the increase being smaller in group 4 than in group 3. Serum HDL-C decreased in group 3 and increased in group 4 compared with time 0, but changes were lower in group 3 than in group 4. SDG reduced TC and LDL-C by 33% and 35%, respectively, at week 8 but increased HDL-C significantly, by>140%, as early as week 4. It also decreased TC/LDL-C and LDL-C/HDL-C ratios by approximately 64%. There was an increase in aortic malondialdehyde and chemiluminescence in group 3, and they were lower in group 4 than in group 3. SDG reduced hypercholesterolemic atherosclerosis by 73%. CONCLUSIONS: These results suggest that SDG reduced hypercholesterolemic atherosclerosis and that this effect was associated with a decrease in serum cholesterol, LDL-C, and lipid peroxidation product and an increase in HDL-C and antioxidant reserve.  (+info)

(8/858) Concentration of serum lipids and aortic lesion size in female and male apo E-deficient mice fed docosahexaenoic acid.

Apolipoprotein (apo) E-deficient mice were fed an atherogenic diet with either 1% ethyl ester docosahexaenoic acid (DHA) or safflower oil (SO) as a source of linoleic acid for 8 week. Both genders fed DHA had higher proportions of eicosapentaenoic acid and DHA, and lower proportions of linoleic and arachidonic acids in the liver and serum phospholipids than those fed SO. Males fed DHA had greater liver weight and tended to have higher concentrations of serum lipids and liver cholesterol than those fed SO, and there were opposite trends in females. Dietary fats and gender led to no significant effect on lesion sizes in aortic arch and thoracic plus abdominal aorta. These results indicate that the interactive action of sex-related factor(s) with dietary polyunsaturated fatty acids is involved in metabolic changes of serum lipids in apoE-deficient mice, and addition of DHA, compared with addition of SO, is not effective to abolish the atherosclerosis in this animal model.  (+info)