Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis L. (1/35)

The ribosome inactivating protein (RIP) gene from D. sinensis was used as a cytotoxin gene to induce male sterility in tobacco plants. The TA29 promoter, obtained by PCR amplification from tobacco, was fused to the RIP cDNA, and the chimaeric molecule was then introduced into tobacco plants by Agrobacterium-mediated transformation. Out of twenty-one independent transformants, twenty transgenic tobacco plants exhibited male sterility. Southern blot analysis revealed that four of the transgenic plants contained a single copy of the RIP gene, while the rest of the transgenic tobacco plants had two to four copies of the gene. The transgenic male sterile plants set seeds normally when pollinated with pollens from untransformed control plants, indicating that the RIP gene does not affect the pistil development. Furthermore, the seed yield of the transgenic plant was similar to that of the untransformed, self-pollinated control plant. A light microscopic observation of anther cross sections clearly showed that the tapetal tissue of the anther was selectively and completely destroyed causing male sterility. This study suggests that the RIP gene can be used as a cytotoxin gene for induction of male sterility in the plant.  (+info)

Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). (2/35)

Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.  (+info)

Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? (3/35)

Senescence of carnation petals is accompanied by autocatalytic ethylene production and wilting of the petals; the former is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes and the latter is related to the expression of a cysteine proteinase (CPase) gene. CPase is probably responsible for the degradation of proteins, leading to the decomposition of cell components and resultant cell death during the senescence of petals. The carnation plant also has a gene for the CPase inhibitor (DC-CPIn) that is expressed abundantly in petals at the full opening stage of flowers. In the present study, DC-CPIn cDNA was cloned and expressed in E. coli. The recombinant DC-CPIn protein completely inhibited the activities of a proteinase (CPase) extracted from carnation petals and papain. Northern blot analysis showed that the mRNA for CPase (DC-CP1) accumulated in large amounts, whereas that for DC-CPIn disappeared, corresponding to the onset of petal wilting in flowers undergoing natural senescence and exogenous ethylene-induced senescence. Based on these findings, a role of DC-CPIn in the regulation of petal wilting is suggested; DC-CPIn acts as a suppressor of petal wilting, which probably functions to fine-tune petal wilting in contrast to coarse tuning, the up-regulation of CPase activity by gene expression.  (+info)

Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. (4/35)

The amount of polyamines (such as putrescine, spermidine, and spermine) increased under environmental stress conditions. We used transgenic technology in an attempt to evaluate their potential for mitigating the adverse effects of several abiotic stresses in plants. Because there is a metabolic competition for S-adenosylmethionine as a precursor between polyamine (PA) and ethylene biosyntheses, it was expected that the antisense-expression of ethylene biosynthetic genes could result in an increase in PA biosynthesis. Antisense constructs of cDNAs for senescence-related 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (CAS) and ACC oxidase (CAO) were isolated from carnation flowers that were introduced into tobacco by Agrobacterium-mediated transformation. Several transgenic lines showed higher PA contents than wild-type plants. The number and weight of seeds also increased. Stress-induced senescence was attenuated in these transgenic plants in terms of total chlorophyll loss and phenotypic changes after oxidative stress with hydrogen peroxide (H2O2), high salinity, acid stress (pH 3.0), and ABA treatment. These results suggest that the transgenic plants with antisense CAS and CAO cDNAs are more tolerant to abiotic stresses than wild-type plants. This shows a positive correlation between PA content and stress tolerance in plants.  (+info)

Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. (5/35)

A protein hydrolyzing hydroxycinnamoyl-CoA esters has been purified from tobacco stem extracts by a series of high pressure liquid chromatography steps. The determination of its N-terminal amino acid sequence allowed design of primers permitting the corresponding cDNA to be cloned by PCR. Sequence analysis revealed that the tobacco gene belongs to a plant acyltransferase gene family, the members of which have various functions. The tobacco cDNA was expressed in bacterial cells as a recombinant protein fused to glutathione S-transferase. The fusion protein was affinity-purified and cleaved to yield the recombinant enzyme for use in the study of catalytic properties. The enzyme catalyzed the synthesis of shikimate and quinate esters shown recently to be substrates of the cytochrome P450 3-hydroxylase involved in phenylpropanoid biosynthesis. The enzyme has been named hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyltransferase. We show that p-coumaroyl-CoA and caffeoyl-CoA are the best acyl group donors and that the acyl group is transferred more efficiently to shikimate than to quinate. The enzyme also catalyzed the reverse reaction, i.e. the formation of caffeoyl-CoA from chlorogenate (5-O-caffeoyl quinate ester). Thus, hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase appears to control the biosynthesis and turnover of major plant phenolic compounds such as lignin and chlorogenic acid.  (+info)

Replication of Carnation Italian ringspot virus defective interfering RNA in Saccharomyces cerevisiae. (6/35)

Two plasmids from which the sequences coding for the 36- and 95-kDa proteins of Carnation Italian ringspot virus (CIRV) could be transcribed in vivo in the yeast Saccharomyces cerevisiae under the control of the ADH1 promoter and terminator were constructed. The two proteins, which constitute the viral replicase, were correctly translated and integrated into membranes of the yeast cells. An additional plasmid was introduced in yeasts expressing the CIRV replicase, from which a defective interfering (DI) RNA (DI-7 RNA) could be transcribed under the control of the GAL1 promoter and terminated by the Tobacco ringspot virus satellite ribozyme, which cleaved 19 nucleotides downstream of the 3' end of DI RNA. The DI-7 RNA transcripts were amplified by the viral replicase as demonstrated by the restoration of the authentic 3' end, the requirement of a specific cis-acting signal at this terminus, the preferential accumulation of molecules with the authentic 5' terminus (AGAAA), the synthesis of head-to-tail dimers, the presence of negative strands, and the incorporation of 5-bromo-UTP. Additionally, transformation with a dimeric construct of DI-7 RNA led to the synthesis of monomers, mimicking the activity of the viral replicase in plant cells.  (+info)

Purification and properties of a new S-adenosyl-L-methionine:flavonoid 4'-O-methyltransferase from carnation (Dianthus caryophyllus L.). (7/35)

A new enzyme, S-adenosyl-l-methionine:flavonoid 4'-O-methyltransferase (EC 2.1.1.-) (F 4'-OMT), has been purified 1 399-fold from the tissues of carnation (Dianthus caryophyllus L). The enzyme, with a molecular mass of 43-45 kDa and a pI of 4.15, specifically methylates the hydroxy substituent in 4'-position of the flavones, flavanones and isoflavones in the presence of S-adenosyl-l-methionine. A high affinity for the flavone kaempferol was observed (Km = 1.7 micro m; Vmax = 95.2 micro mol.min-1.mg-1), while other 4'-hydroxylated flavonoids proved likewise to be suitable substrates. Enzyme activity had no apparent Mg++ requirement but was inhibited by SH-group reagents. The optimum pH value for F 4'-OMT activity was found to be around neutrality. Kinetic analysis of the enzyme bi-substrate reaction indicates a Ping-Pong mechanism and excludes the formation of a ternary complex. The F 4'-OMT activity was increased, in both in vitro and in vivo carnation tissues, by the inoculation with Fusarium oxysporum f. sp. dianthi. The enzyme did not display activity towards hydroxycinnamic acid derivatives, some of which are involved, as methylated monolignols, in lignin biosynthesis; the role of this enzyme could be therefore mainly defensive, rather than structural, although its precise function still needs to be ascertained.  (+info)

Size selective recognition of siRNA by an RNA silencing suppressor. (8/35)

RNA silencing in plants likely exists as a defense mechanism against molecular parasites such as RNA viruses, retrotransposons, and transgenes. As a result, many plant viruses have adapted mechanisms to evade and suppress gene silencing. Tombusviruses express a 19 kDa protein (p19), which has been shown to suppress RNA silencing in vivo and bind silencing-generated and synthetic small interfering RNAs (siRNAs) in vitro. Here we report the 2.5 A crystal structure of p19 from the Carnation Italian ringspot virus (CIRV) bound to a 21 nt siRNA and demonstrate in biochemical and in vivo assays that CIRV p19 protein acts as a molecular caliper to specifically select siRNAs based on the length of the duplex region of the RNA.  (+info)