The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one non-class II gene. (9/9202)

The human leukocyte antigen (HLA) complex, encompassing 3.5 Mb of DNA from the centromeric HLA-DPB2 locus to the telomeric HLA-F locus on chromosome 6p21, encodes a major part of the genetic predisposition to develop type 1 diabetes, designated "IDDM1." A primary role for allelic variation of the class II HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci has been established. However, studies of animals and humans have indicated that other, unmapped, major histocompatibility complex (MHC)-linked genes are participating in IDDM1. The strong linkage disequilibrium between genes in this complex makes mapping a difficult task. In the present paper, we report on the approach we have devised to circumvent the confounding effects of disequilibrium between class II alleles and alleles at other MHC loci. We have scanned 12 Mb of the MHC and flanking chromosome regions with microsatellite polymorphisms and analyzed the transmission of these marker alleles to diabetic probands from parents who were homozygous for the alleles of the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes. Our analysis, using three independent family sets, suggests the presence of an additional type I diabetes gene (or genes). This approach is useful for the analysis of other loci linked to common diseases, to verify if a candidate polymorphism can explain all of the association of a region or if the association is due to two or more loci in linkage disequilibrium with each other.  (+info)

Islet-specific Th1, but not Th2, cells secrete multiple chemokines and promote rapid induction of autoimmune diabetes. (10/9202)

Migration of CD4 cells into the pancreas represents a hallmark event in the development of insulin-dependent diabetes mellitus. Th1, but not Th2, cells are associated with pathogenesis leading to destruction of islet beta-cells and disease onset. Lymphocyte extravasation from blood into tissue is regulated by multiple adhesion receptor/counter-receptor pairs and chemokines. To identify events that regulate entry of CD4 cells into the pancreas, we transferred Th1 or Th2 cells induced in vitro from islet-specific TCR transgenic CD4 cells into immunodeficient (NOD.scid) recipients. Although both subsets infiltrated the pancreas and elicited multiple adhesion receptors (peripheral lymph node addressin, mucosal addressin cell adhesion molecule-1, LFA-1, ICAM-1, and VCAM-1) on vascular endothelium, entry/accumulation of Th1 cells was more rapid than that of Th2 cells, and only Th1 cells induced diabetes. In vitro, Th1 cells were also distinguished from Th2 cells by the capacity to synthesize several chemokines that included lymphotactin, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1alpha, whereas both subsets produced macrophage inflammatory protein-1beta. Some of these chemokines as well as RANTES, MCP-3, MCP-5, and cytokine-response gene-2 (CRG-2)/IFN-inducible protein-10 (IP-10) were associated with Th1, but not Th2, pancreatic infiltrates. The data demonstrate polarization of chemokine expression by Th1 vs Th2 cells, which, within the microenvironment of the pancreas, accounts for distinctive inflammatory infiltrates that determine whether insulin-producing beta-cells are protected or destroyed.  (+info)

Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. (11/9202)

OBJECTIVE: To test the hypothesis that non-diabetic dizygotic and monozygotic twin siblings of patients with type 1 diabetes have a similar high prevalence of islet cell autoantibodies, thus suggesting that islet cell autoimmunity is mainly environmentally determined. DESIGN: Prospective twin study. SETTING: Two specialist centres for diabetes in the United States. PARTICIPANTS: Non-diabetic monozygotic twin (n=53), dizygotic twin (n=30), and non-twin (n=149) siblings of patients with type 1 diabetes; 101 controls. MAIN OUTCOME MEASURES: Analysis of progression to diabetes and expression of anti-islet autoantibodies. RESULTS: Monozygotic twin siblings had a higher risk of progression to diabetes (12/53) than dizygotic twin siblings (0/30; P<0.005). At the last follow up 22 (41.5%) monozygotic twin siblings expressed autoantibodies compared with 6 (20%) dizygotic twin siblings (P<0.05), 16 (10.7%) non-twin siblings (P<0.0001), and 6 (5.9%) controls (P<0.0001). Monozygotic twin siblings expressed multiple (>/=2) antibodies more often than dizygotic twin siblings (10/38 v 1/23; P<0.05). By life table analysis the probability of developing positive autoantibodies was higher among the monozygotic twin siblings bearing the diabetes associated HLA DQ8/DQ2 genotype than in those without this genotype (64.2% (95% confidence interval 32.5% to 96%) v 23.5% (7% to 40%) at 10 years of discordance; P<0.05). CONCLUSION: Monozygotic and dizygotic twins differ in progression to diabetes and expression of islet cell autoantibodies. Dizygotic twin siblings are similar to non-twin siblings. These two observations suggest that genetic factors play an important part in determination of islet cell autoimmunity, thus rejecting the hypothesis. In addition, there is a high penetrance of islet cell autoimmunity in DQ8/DQ2 monozygotic twin siblings.  (+info)

Is blood glucose predictable from previous values? A solicitation for data. (12/9202)

An important question about blood glucose control in diabetes is, Can present and future blood glucose values be predicted from recent blood glucose history? If this is possible, new continuous blood glucose monitoring technologies under development may lead to qualitatively better therapeutic capabilities. Not only could continuous monitoring technologies alert a user when a hypoglycemic episode or other blood glucose excursion is underway, but measurements may also provide sufficient information to predict near-future blood glucose values. A predictive capability based only on recent blood glucose history would be advantageous because there would be no need to involve models of glucose and insulin distribution, with their inherent requirement for detailed accounting of vascular glucose loads and insulin availability. Published data analyzed here indicate that blood glucose dynamics are not random, and that blood glucose values can be predicted, at least for the near future, from frequently sampled previous values. Data useful in further exploring this concept are limited, however, and an appeal is made for collection of more.  (+info)

Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. (13/9202)

The temporal development of autoantibodies was studied in 1,353 offspring of parents with type 1 diabetes. Islet cell antibodies (ICAs) and autoantibodies to insulin (IAAs), glutamic acid decarboxylase, and IA-2 were measured at birth, 9 months, 2 years, and 5 years of age. At birth, no offspring had islet autoimmunity other than maternally acquired antibodies, which were shown to influence antibody prevalence up to age 6 months. Antibodies detected thereafter were likely to represent a true de novo production, since prevalences were the same for offspring from mothers and fathers with diabetes, antibodies detected at 9 months were almost always confirmed in the 2-year sample and were associated with an increased likelihood of having or developing other antibodies. By 2 years of age, autoantibodies appeared in 11% of offspring, 3.5% having more than one autoantibody. IAAs were detected most frequently, and few had autoantibodies in the absence of IAAs. In 23 offspring with multiple islet autoantibodies, IAAs preceded other antibodies in 10 cases and were first detected concurrently with other antibodies in 12 and after detection of other antibodies in 1. Development of additional antibodies and changes in levels, including decline of IAAs at older age, was frequent. Nine children, all with IAAs and ICAs, developed diabetes. Overall cumulative risk for disease by 5 years of age was 1.8% (95% CI 0.2-3.4) and was 50% (95% CI 19-81) for offspring with more than one autoantibody in their 2-year sample. Autoimmunity associated with childhood diabetes is an early event and a dynamic process. Presence of IAAs is a consistent feature of this autoimmunity, and IAA detection can identify children at risk.  (+info)

Major DQ8-restricted T-cell epitopes for human GAD65 mapped using human CD4, DQA1*0301, DQB1*0302 transgenic IA(null) NOD mice. (14/9202)

The 65KD isoform of GAD is considered to be a major target autoantigen in many humans with autoimmune prediabetes or diabetes. The major histocompatibility complex class II allele DQA1*0301, DQB1*0302, which encodes HLA-DQ8, confers susceptibility to type 1 diabetes and occurs in up to 80% of affected individuals. To map T-cell epitopes for GAD65 restricted to the diabetes-associated DQ8 heterodimer, we generated transgenic NOD mice expressing HLA-DQ8 and human CD4 while having the mouse class II gene (IA(beta)) deleted. These mice were immunized with full-length purified recombinant GAD65, and the fine specificity of T-cell responses was mapped by examining recall responses of bulk splenocytes to an overlapping set of 20-mer peptides encompassing the entire GAD65 protein. Four different peptides (P121-140, P201-220, P231-250, and P471-490) gave significant T-cell recall responses. P201-220 and P231-250 have been shown previously to bind DQ8, whereas the other two peptides had been classified as nonbinders. Interestingly, the peptide giving the greatest response (P201-220) encompasses residues 206-220 of GAD65, a region that has been shown to be a dominant T-cell epitope in wild-type IA(g7) NOD mice. Overlap in this T-cell epitope likely reflects structural similarities between DQ8 and IA(g7). The fine specificity of antibody responses in the GAD65-immunized mice was also examined by testing the antisera by enzyme-linked immunosorbent assay (ELISA) against the same overlapping set of peptides. The two dominant B-cell epitopes were P361-380 and P381-400; P121-140 and P471-490 appeared to correspond to both B- and T-cell epitopes. Although the NOD human CD4, DQ8, IA(null) transgenic mice generated in these studies do not develop autoimmune diabetes either spontaneously or after cyclophosphamide treatment, they can be used to map DQ8-restricted T-cell epitopes for a variety of human islet autoantigens. They can also be used to test T-cell-specific reagents, such as fluorescently labeled DQ8 tetramers containing GAD65 peptides or other beta-cell peptides, which we believe will be useful in analyzing human immune responses in diabetic and prediabetic patients.  (+info)

Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. (15/9202)

Allogeneic islet transplantation can restore an insulin-independent state in C-peptide-negative type 1 diabetic patients. We recently reported three cases of surviving islet allografts that were implanted in type 1 diabetic patients under maintenance immune suppression for a previous kidney graft. The present study compares islet graft-specific cellular auto- and alloreactivity in peripheral blood from those three recipients and from four patients with failing islet allografts measured over a period of 6 months after portal islet implantation. The three cases that remained C-peptide-positive for >1 year exhibited no signs of alloreactivity, and their autoreactivity to islet autoantigens was only marginally increased. In contrast, rapid failure (<3 weeks) in three other cases was accompanied by increases in precursor frequencies of graft-specific alloreactive T-cells; in one of them, the alloreactivity was preceded by a sharply increased autoreactivity to several islet autoantigens. One recipient had a delayed loss of islet graft function (33 weeks); he did not exhibit signs of graft-specific alloimmunity, but developed a delayed increase in autoreactivity. The parallel between metabolic outcome of human beta-cell allografts and cellular auto- and alloreactivity in peripheral blood suggests a causal relationship. The present study therefore demonstrates that T-cell reactivities in peripheral blood can be used to monitor immune mechanisms, which influence survival of beta-cell allografts in diabetic patients.  (+info)

Specific gene expression in pancreatic beta-cells: cloning and characterization of differentially expressed genes. (16/9202)

Identification and characterization of genes expressed preferentially in pancreatic beta-cells will clarify the mechanisms involved in the specialized properties of these cells, as well as providing new markers of the development of type 1 diabetes. Despite major efforts, relatively few beta-cell-specific genes have been characterized. We applied representational difference analysis to identify genes expressed selectively in the pancreatic beta-cell line betaTC1 compared with the pancreatic alpha-cell line alphaTC1 and isolated 26 clones expressed at higher levels in the beta-cells than in the alpha-cells. DNA sequencing revealed that 14 corresponded to known genes (that is, present in GenBank). Only four of those genes had been shown previously to be expressed at higher levels in beta-cells (insulin, islet amyloid polypeptide, neuronatin, and protein kinase A regulatory subunit [RIalpha]). The known genes include transcription factors (STAT6) and mediators of signal transduction (guanylate cyclase). The remaining 12 genes are absent from the GenBank database or are present as expressed sequence tag (EST) sequences (4 clones). Some of the genes are expressed in a highly specific pattern-expression in betaTC1 and islet cells and in relatively few of the non-beta-cell types examined; others are expressed in most cell types tested. The identification of these differentially expressed genes may aid in attaining a clearer understanding of the mechanisms involved in beta-cell function and of the possible immunogens involved in development of type 1 diabetes.  (+info)